无机材料学报 ›› 2022, Vol. 37 ›› Issue (5): 481-492.DOI: 10.15541/jim20210502

所属专题: 【虚拟专辑】锂金属电池,钠离子电池和水系电池(2020~2021)

• 综述 • 上一篇    下一篇

水系锂离子电池负极材料LiTi2(PO4)3的研究进展

王禹桐1(), 张非凡1, 许乃才2, 王春霞1, 崔立山1, 黄国勇1()   

  1. 1. 中国石油大学(北京) 新能源与材料学院, 重质油国家重点实验室, 北京 102249
    2. 青海师范大学 化学化工学院, 西宁 810008
  • 收稿日期:2021-08-13 修回日期:2021-10-22 出版日期:2022-05-20 网络出版日期:2021-11-01
  • 通讯作者: 黄国勇, 教授. E-mail: huanggy@cup.edu.cn
  • 作者简介:王禹桐(1992-), 男, 博士研究生. E-mail: 1248736790@qq.com;
  • 基金资助:
    国家自然科学基金(52022109);国家自然科学基金(51834008);北京市自然科学基金(2202047);中国石油大学(北京)科研基金(2462018YJRC041);中国石油大学(北京)科研基金(2462020YXZZ016)

Research Progress of LiTi2(PO4)3 Anode for Aqueous Lithium-ion Batteries

WANG Yutong1(), ZHANG Feifan1, XU Naicai2, WANG Chunxia1, CUI Lishan1, HUANG Guoyong1()   

  1. 1. State Key Laboratory of Heavy Oil, College of New Energy and Materials, China University of Petroleum-Beijing, Beijing 102249, China
    2. School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
  • Received:2021-08-13 Revised:2021-10-22 Published:2022-05-20 Online:2021-11-01
  • Contact: HUANG Guoyong, professor. E-mail:huanggy@cup.edu.cn
  • About author:WANG Yutong (1992-), male, PhD candidate. E-mail: 1248736790@qq.com
  • Supported by:
    National Natural Science Foundation of China(52022109);National Natural Science Foundation of China(51834008);Beijing Municipal Natural Science Foundation(2202047);Science Foundation of China University of Petroleum, Beijing(2462018YJRC041);Science Foundation of China University of Petroleum, Beijing(2462020YXZZ016)

摘要:

锂离子电池作为一种绿色可充电电池, 具有较高的能量密度及功率密度, 但市售锂离子电池主要以有机物为电解液, 当电池过充或短路时存在一定的燃烧及爆炸风险。为应对此问题, 水系锂离子电池逐渐走进人们的视野, 它具有清洁环保、安全性能高等优点, 其工作电压为1.5~2.0 V, 主要应用于储能领域。考虑到水系电池的析氢析氧反应, 常规负极材料无法应用于水系锂离子电池, 因此水系锂离子电池的研发关键在于负极材料的选取。LiTi2(PO4)3具有开放的三维通道以及合适的嵌锂电位, 可以作为水系锂离子电池的负极材料。LiTi2(PO4)3的合成方法主要有高温固相法、溶胶-凝胶法和水热法等。为进一步提高LiTi2(PO4)3的电化学性能, 可以采用颗粒纳米化、形貌控制、元素掺杂及碳包覆等方式进行改性。本文从合成方法及改性手段的角度, 对近年来国内外水系锂离子电池负极材料LiTi2(PO4)3的研究进行综述, 并对LiTi2(PO4)3负极材料的发展前景做出展望。

关键词: 水系锂离子电池, 负极材料, LiTi2(PO4)3, 综述

Abstract:

As green rechargeable batteries, lithium-ion batteries feature high energy and power density. However, commonly-used electrolytes, organic compounds, in commercially available lithium-ion batteries are flammable and toxic, which leaves them at the risk of combustion and explosion when being overcharged or short-circuited. In order to solve this problem, much attention has been paid to lithium-ion batteries with aqueous electrolytes, which take low-toxicity and high safety as the prominent advantages. The working voltage, 1.5-2.0 V, indicates their usage mainly in the field of energy storage. Considering the hydrogen and oxygen evolution, conventional anode materials used in commercially available lithium-ion batteries are inconformity for water-based lithium-ion batteries. Therefore, the key to the development of aqueous lithium-ion batteries lies in the selection of anodes. The anode material, LiTi2(PO4)3, has drawn the attention of researchers due to its advantages such as three-dimensional channel, and appropriate lithium-ion intercalation potential. The synthesis methods of LiTi2(PO4)3 mainly include high temperature solid-phase calcination, Sol-Gel methods and hydrothermal reaction, etc. To further improve the electrochemical performance of LiTi2(PO4)3, strategies can be used such as particle nanocrystallization, morphology control, element doping, and carbon-coating, etc. This review focuses on the synthesis and modification of LiTi2(PO4)3, as well as related research progress. At last, the future development of LiTi2(PO4)3 as anode material for lithium-ion battery is properly prospected.

Key words: aqueous lithium-ion battery, anode material, LiTi2(PO4)3, review

中图分类号: