无机材料学报 ›› 2022, Vol. 37 ›› Issue (4): 376-386.DOI: 10.15541/jim20210420
所属专题: 【信息功能】电介质材料
吴明1(), 肖娅男1, 李华强1, 刘泳斌1, 高景晖1(), 钟力生1, 娄晓杰2
收稿日期:
2021-07-05
修回日期:
2021-08-09
出版日期:
2022-04-20
网络出版日期:
2021-11-01
通讯作者:
高景晖, 教授. E-mail: gaojinghui@xjtu.edu.cn作者简介:
吴明(1992-), 男, 博士, 助理教授. E-mail: wuming@xjtu.edu.cn
基金资助:
WU Ming1(), XIAO Yanan1, LI Huaqiang1, LIU Yongbin1, GAO Jinghui1(), ZHONG Lisheng1, LOU Xiaojie2
Received:
2021-07-05
Revised:
2021-08-09
Published:
2022-04-20
Online:
2021-11-01
Contact:
GAO Jinghui, professor. E-mail: gaojinghui@xjtu.edu.cnAbout author:
WU Ming (1992-), male, PhD, assistant professor. E-mail: wuming@xjtu.edu.cn
Supported by:
摘要:
电卡效应是指电介质材料中由于施加或去除电场导致的材料温度变化的现象, 包括正电卡效应和负电卡效应两种类型。电卡效应作为一种高效率、无噪音、环境友好的制冷效应, 在固态制冷特别是集成电路制冷领域显示出广阔的应用前景, 在过去的几十年中吸引了科研人员广泛的研究兴趣。研究表明, 通过结合正负电卡效应, 可以显著提高电卡效应的制冷能力。与正电卡效应不同, 负电卡效应因其独特的物理起源, 调控手段极为有限。本文以负电卡效应为中心, 重点介绍反铁电材料中负电卡效应的最新研究进展, 具体内容包括以下四个部分: 首先, 从电卡效应的研究历史出发, 介绍了电卡效应的制冷原理, 介绍了一个典型的能将正、负电卡效应结合的双制冷循环; 其次, 介绍了基于Maxwell关系的负电卡效应间接测试方法, 以及几种负电卡效应直接测试方法, 并讨论了不同方法的适用条件和优缺点; 再次, 以典型的负电卡效应材料——反铁电材料为例, 着重介绍了负电卡效应的物理起源, 综述了反铁电薄膜和反铁电块体材料中的负电卡效应, 并对其它铁电材料中的负电卡效应做了简要介绍; 最后, 对负电卡效应的研究进行了总结和展望。
中图分类号:
吴明, 肖娅男, 李华强, 刘泳斌, 高景晖, 钟力生, 娄晓杰. 反铁电材料中负电卡效应的研究进展[J]. 无机材料学报, 2022, 37(4): 376-386.
WU Ming, XIAO Yanan, LI Huaqiang, LIU Yongbin, GAO Jinghui, ZHONG Lisheng, LOU Xiaojie. Negative Electrocaloric Effects in Antiferroelectric Materials: a Review[J]. Journal of Inorganic Materials, 2022, 37(4): 376-386.
图1 电卡效应冷却循环中的极化翻转、温度变化和熵变示意图
Fig. 1 Schematic of polarization switching, temperature change and entropy change during cooling cycle of electrocaloric effect (a) In virgin state, the ferroelectric polarization randomly distributs; (b) With the application of electric field, the ferroelectric polarization is aligned, and the temperature of the ferroelectric materials is increased; (c) After an isothermal process, the temperature of the ferroelectric materials decreases to the environment temperature; (d) After removal of the electric field, the ferroelectric polarization recovers randomly distribution, the temperature of the ferroelectric materials decreases
图2 基于正负电卡效应共存的制冷循环[10]
Fig. 2 Feasible combination of positive and negative electrocaloric effect[10] (a) Schematic of the cooling cycle; (b) Heat flow of the dual cooling cycle measured by DSC
图3 电卡效应直接测量法
Fig. 3 Direct measurements of electrocaloric effect (a) Thermocouple or thermometer[15]; (b) Scanning thermal microscopy[16]; (c) Infra-red camera[17]; (d) Modified differential scanning calorimetry[18]
图4 反铁电材料中的电畴、电滞回线和产生负电卡效应的可能机制示意图[27]
Fig. 4 Electric domain and representative hysteresis loop of antiferroelectrics, schematic of a possible mechanism of negative electrocaloric effect in antiferroelectrics[27] Electric domain of antiferroelectrics (a) before and (b) after being polarized; (c) Representative hysteresis loop of antiferroelectrics; Schematic of a possible mechanism of negative ECE in antiferroelectrics (d1) without any electric field and (d2) under a modest electric field
图5 PbZrO3基反铁电薄膜中的负电卡效应
Fig. 5 Negative electrocaloric effect in PbZrO3-based antiferroelectric thin films (a) P-T curves and (b) temperature change of (Pb0.97, La0.02)(Zr0.95,Ti0.05)O3 thin film[21]; (c) P-T curves and (d) temperature change of 4% (molar ratio) Eu doped PbZrO3 thin film[32]; (e) P-T curves and (f) temperature change of 1% Yb (molar ratio) doped PbZrO3 thin film[33]
图6 PbZrO3薄膜中利用界面缺陷增强负电卡效应[29]
Fig. 6 Interface-defect-enhanced negative electrocaloric effect in PbZrO3 thin films[29] (a) Mechanism of the defect-dipole-suppressed antiferroelectric-ferroelectric phase transition during electric cycling; (b) Antiferroelctric-ferroelectric phase transition field of the PbZrO3 thin films with interface defect (p-PZO) and without interface defect (f-PZO); (c) Comparison of negative ECE in different materials Colorful figures are available on website
图7 不同电场下PbZrO3、(Pb0.97,La0.02)(Zr0.95,Ti0.05)O3和B位非化学计量比(Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03)陶瓷的负电卡效应
Fig. 7 Negative electrocaloric effects of PbZrO3, (Pb0.97,La0.02)(Zr0.95,Ti0.05)O3 and B-site nonstoichiometric (Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03) ceramics under different electric fields (a) PbZrO3[34]; (b) (Pb0.97,La0.02)(Zr0.95,Ti0.05)O3[35]; (c) B-site nonstoichiometric (Pb0.97,La0.02)(Zr0.95,Ti0.05)1+yO3 (y=-0.03, -0.01, 0.01, 0.03)[36] Colorful figures are available on website
图8 两种PNZST陶瓷在不同温度下测试的电滞回线以及两种陶瓷的P-T曲线、温度变化ΔT和熵变ΔS[37]
Fig. 8 Hysteresis loops of PNZST13/2/2 and PNZST43/8/2 under different temperatures, P-T curves, temperature change ΔT and entropy change ΔS of PNZST13/2/2 and PNZST43/8/2[37] (a) Hysteresis loops of PNZST13/2/2; (b) Hysteresis loops of PNZST43/8/2; (c-e) P-T curves, temperature change ΔT and entropy change ΔS of PNZST13/2/2; (f-h) P-T curves, temperature change ΔT and entropy change ΔS of PNZST43/8/2 Colorful figures are available on website
图9 (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3单晶、(Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3单晶、(Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3陶瓷和(Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3陶瓷的电卡效应
Fig. 9 Electrocaloric effect of (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 single crystal, (Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3 single crystal, (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3 ceramics, and (Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3 ceramics (a, b) Hysteresis loops and temperature change ΔT of the (Pb0.97La0.02)(Zr0.66Sn0.23Ti0.11)O3 single crystal[9]; (c, d) Hysteresis loops and temperature change ΔT of the (Pb0.97La0.02)(Zr0.66Sn0.27Ti0.07)O3 single crystal[40]; (e) Temperature change ΔT of the (Pb0.97La0.02)(Zr0.80Sn0.14Ti0.06)O3 ceramics[39]; (f) Comparison of the temperature change in (Pb0.97La0.02)(ZrxSn0.94-xTi0.06)O3 ceramics with other dielectric materials[39] Colorful figures are available on website
[1] | CORREIA T, ZHANG Q. New Generation of Coolers: Electrocaloric Materials New York: Springer, 2014: 34 |
[2] |
SCOTT J. Electrocaloric materials. Annual Review of Materials Research, 2011, 41: 229-240.
DOI URL |
[3] |
FÄHLER S, RÖßLER U, KASTNER O, et al. Caloric effects in ferroic materials: new concepts for cooling. Advanced Engineering Materials, 2012, 14(1/2): 10-19.
DOI URL |
[4] |
SHI J, HAN D, LI Z, et al. Electrocaloric cooling materials and devices for zero-global-warming-potential, high-efficiency refrigeration. Joule, 2019, 3(5): 1200-1225.
DOI URL |
[5] |
NAIR B, USUI T, CROSSLEY S, et al. Large electrocaloric effects in oxide multilayer capacitors over a wide temperature range. Nature, 2019, 575(7783): 468-472.
DOI URL |
[6] |
MISCHENKO A, ZHANG Q, SCOTT J, et al. Giant electrocaloric effect in thin-film PbZr0.95Ti0.05O3. Science, 2006, 311(5765): 1270-1271.
DOI URL |
[7] |
WU H, ZHU J, ZHANG T. Pseudo-first-order phase transition for ultrahigh positive/negative electrocaloric effects in perovskite ferroelectrics. Nano Energy, 2015, 16: 419-427.
DOI URL |
[8] |
PARK M, KIM H, KIM Y, et al. Giant negative electrocaloric effects of Hf0.5Zr0.5O2 thin films. Advanced Materials, 2016, 28(36): 7956-7961.
DOI URL |
[9] |
ZHUO F, LI Q, GAO J, et al. Coexistence of multiple positive and negative electrocaloric responses in (Pb,La)(Zr,Sn,Ti)O3 single crystal. Applied Physics Letters, 2016, 108(8):082904.
DOI URL |
[10] |
LI J, QIN S, BAI Y, et al. Flexible control of positive and negative electrocaloric effects under multiple fields for a giant improvement of cooling capacity. Applied Physics Letters, 2017, 111(9):093901.
DOI URL |
[11] |
LI J, WU H, LI J, et al. Room-temperature symmetric giant positive and negative electrocaloric effect in PbMg0.5W0.5O3 antiferroelectric ceramic. Advanced Functional Materials, 2021, 31(33):2101176.
DOI URL |
[12] |
LU S, TANG X, WU S, et al. Large electrocaloric effect in ferroelectric materials. Journal of Inorganic Materials, 2014, 29(1): 6-12.
DOI URL |
[13] | YU Y, DU H, YANG Z, et al. Electrocaloric effect of lead-free bulk ceramics: current status and challenges. Journal of Inorganic Materials, 2020, 35(6): 633-646. |
[14] |
WU M, SONG D, VATS G, et al. Defect-controlled electrocaloric effect in PbZrO3 thin films. Journal of Materials Chemistry C, 2018, 6(38): 10332-10340.
DOI URL |
[15] |
JIA Y, SUNGTAEK J. Direct characterization of the electrocaloric effects in thin films supported on substrates. Applied Physics Letters, 2013, 103(4):042903.
DOI URL |
[16] |
SHAN D, PAN K, LIU Y, et al. High fidelity direct measurement of local electrocaloric effect by scanning thermal microscopy. Nano Energy, 2020, 67: 104203.
DOI URL |
[17] |
LIU Y, SCOTT J, DKHIL B. Direct and indirect measurements on electrocaloric effect: recent developments and perspectives. Applied Physics Reviews, 2016, 3(3):031102.
DOI URL |
[18] |
SANLIALP M, SHVARTSMAN V, ACOSTA M, et al. Strong electrocaloric effect in lead-free 0.65Ba(Zr0.2Ti0.8)O3-0.35(Ba0.7Ca0.3) TiO3 ceramics obtained by direct measurements. Applied Physics Letters, 2015, 106(6):062901.
DOI URL |
[19] |
LI J, ZHANG D, QIN S, et al. Large room-temperature electrocaloric effect in lead-free BaHfxTi1-xO3 ceramics under low electric field. Acta Materialia, 2016, 115: 58-67.
DOI URL |
[20] |
WU P, LOU X, LI J, et al. Direct and indirect measurement of electrocaloric effect in lead-free (100-x)Ba(Hf0.2Ti0.8)O3-x(Ba0.7Ca0.3)TiO3 ceramics near multi-phase boundary. Journal of Alloys and Compounds, 2017, 725: 275-282.
DOI URL |
[21] |
GENG W, LIU Y, MENG X, et al. Giant negative electrocaloric effect in antiferroelectric La-doped Pb(ZrTi)O3 thin films near room temperature. Advanced Materials, 2015, 27(20): 3165-3169.
DOI URL |
[22] |
MA Y, GRÜNEBOHM A, MEYER K, et al. Positive and negative electrocaloric effect in BaTiO3 in the presence of defect dipoles. Physical Review B, 2016, 94(9):094113.
DOI URL |
[23] |
WEYLAND F, BRADEŠKO A, MA Y, et al. Impact of polarization dynamics and charged defects on the electrocaloric response of ferroelectric Pb(Zr,Ti)O3 ceramics. Energy Technology, 2018, 6(8): 1519-1525.
DOI URL |
[24] |
LI J, YIN R, SU X, et al. Complex phase transitions and associated electrocaloric effects in different oriented PMN-30PT single crystals under multi-fields of electric field and temperature. Acta Materialia, 2020, 182: 250-256.
DOI URL |
[25] | VATS G, KUMAR A, ORTEGA N, et al. Giant pyroelectric energy harvesting and a negative electrocaloric effect in multilayered nanostructures. Energy & Environmental Science, 2016, 9(4): 1335-1345. |
[26] |
ZHANG T, LI W, HOU Y, et al. Positive/negative electrocaloric effect induced by defect dipoles in PZT ferroelectric bilayer thin films. RSC Advances, 2016, 6(76): 71934-71939.
DOI URL |
[27] |
HAO X, ZHAI J, KONG L, et al. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in Materials Science, 2014, 63: 1-57.
DOI URL |
[28] |
GRüNEBOHM A, MA Y, MARATHE M, et al. Origins of the inverse electrocaloric effect. Energy Technology, 2018, 6(8): 1491-1511.
DOI URL |
[29] | WU M, SONG D, GUO M, et al. Remarkably enhanced negative electrocaloric effect in PbZrO3 thin film by interface engineering. ACS Applied Materials & Interfaces, 2019, 11(40): 36863-36870. |
[30] |
GOUPIL F, BERENOV A, AXELSSON A, et al. Direct and indirect electrocaloric measurements on <001> PbMg1/3Nb2/3O3-30PbTiO3 single crystals. Journal of Applied Physics, 2012, 111(12):124109.
DOI URL |
[31] |
BAI Y, ZHENG G, SHI S. Abnormal electrocaloric effect of Na0.5Bi0.5TiO3-BaTiO3 lead-free ferroelectric ceramics above room temperature. Materials Research Bulletin, 2011, 46(11): 1866-1869.
DOI URL |
[32] |
YE M, LI T, SUN Q, et al. A giant negative electrocaloric effect in Eu-doped PbZrO3 thin films. Journal of Materials Chemistry C, 2016, 4(16): 3375-3378.
DOI URL |
[33] |
WANG W, CHEN X, SUN Q, et al. Tailoring the negative electrocaloric effect of PbZrO3 antiferroelectric thin films by Yb doping. Journal of Alloys and Compounds, 2020, 830: 154581.
DOI URL |
[34] |
PIRC R, ROŽIČ B, KORUZA J, et al. Negative electrocaloric effect in antiferroelectric PbZrO3. EPL (Europhysics Letters), 2014, 107(1):17002.
DOI URL |
[35] |
ZHAO Y, LIU Q, TANG X, et al. Giant negative electrocaloric effect in anti-ferroelectric (Pb0.97La0.02)(Zr0.95Ti0.05)O3 ceramics. ACS Omega, 2019, 4(11): 14650-14654.
DOI URL |
[36] |
NIU Z, JIANG Y, TANG X, et al. Giant negative electrocaloric effect in B-site non-stoichiometric (Pb0.97La0.02)(Zr0.95Ti0.05)1+yO3 anti-ferroelectric ceramics. Materials Research Letters, 2018, 6(7): 384-389.
DOI URL |
[37] |
XU Z, FAN Z, LIU X, et al. Impact of phase transition sequence on the electrocaloric effect in Pb(Nb,Zr,Sn,Ti)O3 ceramics. Applied Physics Letters, 2017, 110(8):082901.
DOI URL |
[38] |
ZHUO F, LI Q, YAN Q, et al. Temperature induced phase transformations and negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Journal of Applied Physics, 2017, 122(15):154101.
DOI URL |
[39] | ZHUO F, LI Q, GAO J, et al. Giant negative electrocaloric effect in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectrics near room temperature. ACS Applied Materials & Interfaces, 2018, 10(14): 11747-11755. |
[40] |
ZHUO F, LI Q, QIAO H, et al. Field-induced phase transitions and enhanced double negative electrocaloric effects in (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric single crystal. Applied Physics Letters, 2018, 112(13):133901.
DOI URL |
[41] |
CHEN J, TANG Z, LU Q, et al. Giant negative electrocaloric effect over a broad temperature range in lead-free based Bi0.5(K0.15Na0.85)0.05TiO3 relaxor ferroelectric films. Journal of Alloys and Compounds, 2018, 756: 62-67.
DOI URL |
[42] |
GUO M, WU M, GAO W, et al. Giant negative electrocaloric effect in antiferroelectric PbZrO3 thin films in an ultra-low temperature range. Journal of Materials Chemistry C, 2019, 7(3): 617-621.
DOI URL |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[8] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[9] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[10] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[11] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[15] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||