无机材料学报 ›› 2022, Vol. 37 ›› Issue (1): 93-100.DOI: 10.15541/jim20210361
所属专题: 【结构材料】隔热材料
张晓山1(), 王兵1(), 吴楠2, 韩成1, 刘海燕1, 王应德1()
收稿日期:
2021-06-07
修回日期:
2021-06-29
出版日期:
2022-01-20
网络出版日期:
2021-07-12
通讯作者:
王应德, 教授. E-mail: wangyingde@nudt.edu.cn; 王 兵, 副研究员. E-mail: bingwang@nudt.edu.cn
作者简介:
张晓山(1991-), 男, 博士研究生. E-mail: zhangxiaoshan15@nudt.edu.cn
基金资助:
ZHANG Xiaoshan1(), WANG Bing1(), WU Nan2, HAN Cheng1, LIU Haiyan1, WANG Yingde1()
Received:
2021-06-07
Revised:
2021-06-29
Published:
2022-01-20
Online:
2021-07-12
Contact:
WANG Yingde, professor. E-mail: wangyingde@nudt.edu.cn; WANG Bing, associate professor. E-mail: bingwang@nudt.edu.cn
About author:
ZHANG Xiaoshan (1991-), male, PhD candidate. E-mail: zhangxiaoshan15@nudt.edu.cn
Supported by:
摘要:
陶瓷纤维具有较好的力学、耐高温和抗热震性能, 是重要的高温隔热材料。目前, 传统陶瓷纤维膜高温隔热性能不佳, 限制了其在高温隔热领域的应用。本研究采用静电纺丝技术制备了具有高红外遮蔽性能的SiZrOC纳米纤维膜, 纤维的平均直径为(511±108) nm, 组成为SiO2、ZrO2、SiOC和自由碳。SiZrOC纤维膜展现出优异的高温隔热性能。在1000 ℃时, SiZrOC纤维膜的热导率仅为0.127 W·m-1·K-1, 明显低于其他传统陶瓷隔热纤维。此外, SiZrOC纤维膜还具有较高的强度、良好的柔性和优异的耐高温性能, 在高温隔热领域具有极大的应用潜力。本研究可以为制备其他高性能隔热材料提供新的思路。
中图分类号:
张晓山, 王兵, 吴楠, 韩成, 刘海燕, 王应德. 高红外遮蔽SiZrOC纳米纤维膜的制备及其性能研究[J]. 无机材料学报, 2022, 37(1): 93-100.
ZHANG Xiaoshan, WANG Bing, WU Nan, HAN Cheng, LIU Haiyan, WANG Yingde. Infrared Radiation Shielded SiZrOC Nanofiber Membranes: Preparation and High-temperature Thermal Insulation Performance[J]. Journal of Inorganic Materials, 2022, 37(1): 93-100.
图3 (a)PZSO先驱体纤维TG曲线和(b)不同温度下裂解产物气体FT-IR谱图
Fig. 3 (a) TG curve of the PZSO precursor fiber and (b) FT-IR spectra of pyrolysis gas product at various temperatures
图4 (a)SiZrOC纤维膜的应力-应变曲线(插图为SiZrOC纤维膜悬挂10 g砝码和缠绕玻璃棒光学照片); (b)SiZrOC纤维的SEM照片(插图为纤维直径分布图); (c)SiZrOC纤维的EDS谱图和元素含量; (d)SiZrOC纤维的TEM、HRTEM和SAED照片
Fig. 4 (a) Tensile strength-tensile strain of the SiZrOC nanofiber membranes (insets showing photographs of a piece of SiZrOC nanofiber membrane hanging a 10 g weight and bending with a glass bar); (b) SEM image of the SiZrOC nanofiber (inset showing distribution of fiber diameter); (c) EDS spectrum of SiZrOC nanofiber; (d) TEM image of the SiZrOC fiber (Inset showing the SAED pattern and HRTEM image taken from the region being marked in the red square box)
图6 (a)SiZrOC和SiZrO纤维的XPS全谱图; (b)C1s, (c)Si2p和(d)Zr3d分峰拟合图
Fig. 6 (a) XPS survey spectra of the SiZrOC and SiZrO fibers, and peak fittings of the SiZrOC fibers of (b) C1s, (c) Si2p, (d) Zr3d
图7 (a)酒精灯加热SiZrOC纤维膜的光学照片, (b)25和1000 ℃下SiZrOC和SiZrO纤维膜热导率, (c)SiZrOC和SiZrO纤维膜的消光系数和(d)1000 ℃下SiZrOC纤维膜热导率与传统陶瓷纤维热导率对比
Fig. 7 (a) Photograph of SiZrOC nanofiber membrane heated by alcohol lamp, (b) thermal conductivities and (c) extinction coefficient (e) of SiZrOC and SiZrO nanofibers, and (d) thermal conductivity comparison among different ceramic fibers at 1000 ℃
[1] |
SHIN S, WANG Q, LUO J, et al. Advanced materials for high- temperature thermal transport. Advanced Functional Materials, 2020, 30(8):1904815.
DOI URL |
[2] |
XU X, FU S, GUO J, et al. Elastic ceramic aerogels for thermal superinsulation under extreme conditions. Materials Today, 2020, 42:162-177.
DOI URL |
[3] | RANDALL J P, MEADOR M, JANA S C. Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl. Mater. Interf., 2011, 3(3):613-626. |
[4] |
JIA C, LI L, LIU Y. et al. Highly compressible and anisotropic lamellar ceramic sponges with superior thermal insulation and acoustic absorption performances. Nature Communication, 2020, 11:3732.
DOI URL |
[5] | SU L, WANG H, NIU M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation. Science Advances, 2020, 6(26): eaay6689. |
[6] |
ZHANG X, WANG F, DOU L, et al. Ultrastrong, superelastic, and lamellar multiarch structured ZrO2-Al2O3 nanofibrous aerogels with high-temperature resistance over 1300 ℃. ACS Nano, 2020, 14(11):15616-15625.
DOI URL |
[7] |
YU H, TONG Z, ZHANG B, et al. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation. Chemical Engineering Journal, 2021, 418:129342.
DOI URL |
[8] |
SI Y, MAO X, ZHENG H, et al. Silica nanofibrous membranes with ultra-softness and enhanced tensile strength for thermal insulation. RSC Advances, 2015, 5(8):6027-6032.
DOI URL |
[9] |
MAO X, BAI Y, YU J, et al. Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration. Journal of the American Ceramic Society, 2016, 99(8):2760-2768.
DOI URL |
[10] |
ZHANG P, CHEN D, JIAO X. Fabrication of flexible α-alumina fibers composed of nanosheets. European Journal of Inorganic Chemistry, 2012, 2012(26):4167-4173.
DOI URL |
[11] |
ZU G, SHEN J, WANG W, et al. Robust, highly thermally stable, core-shell nanostructured metal oxide aerogels as high-temperature thermal superinsulators, adsorbents, and catalysts. Chemistry of Materials, 2014, 26(19):5761-5772.
DOI URL |
[12] |
ZHANG X, WANG B, WU N, et al. Micro-nano ceramic fibers for high temperature thermal insulation. Journal of Inorganic Materials, 2021, 36(3):245-256.
DOI URL |
[13] |
WANG T, YU Q, KONG J. Preparation and heat-insulating properties of biomorphic ZrO2 hollow fibers derived from a cotton template. International Journal of Applied Ceramic Technology, 2018, 15(2):472-478.
DOI URL |
[14] |
LO Y W, WEI W, HSUEH C H. Low thermal conductivity of porous Al2O3 foams for SOFC insulation. Materials Chemistry and Physics, 2011, 129(1/2):326-330.
DOI URL |
[15] |
SHI X G, LI M, MA W, et al. Experimental study on thermal transport property of KD-II SiC fiber. Journal of Inorganic Materials, 2018, 33(7):756.
DOI URL |
[16] |
LIN C, YU J, XIAO H, et al. Highly thermal conductive polymer composites via constructing micro-phragmites communis structured carbon fibers. Chemical Engineering Journal, 2019, 375:121921.
DOI URL |
[17] | HASS D D, PRASDA B D, GLASS D E, et al. Reflective coating on fibrous insulation for reduced heat transfer. NASA Contractor Report, 201733, 1997. |
[18] |
XU L, JIANG Y, FENG J, et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations. Ceramics International, 2015, 41(1):437-442.
DOI URL |
[19] |
GAN X, YU Z, YUAN K, et al. Preparation of a CeO2-nanoparticle thermal radiation shield coating on ZrO2 fibers via a hydrothermal method. Ceramics International, 2017, 43(16):14183-14191.
DOI URL |
[20] |
ZHAO J, DUAN Y, WANG X, et al. Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation. International Journal of Thermal Sciences, 2013, 70:54-64.
DOI URL |
[21] |
ZHANG X, WANG B, WU N, et al. Flexible and thermal-stable SiZrOC nanofiber membranes with low thermal conductivity at high-temperature. Journal of the European Ceramic Society, 2020, 40(5):1877-1885.
DOI URL |
[22] |
CHEN L, PAN R, HONG C, et al. Effects of Zr on the precursor architecture and high-temperature nanostructure evolution of SiOC polymer-derived ceramics. Journal of the European Ceramic Society, 2015, 36(3):395-402.
DOI URL |
[23] |
SORARU G, DALLABONA N, GERVAIS C, et al. Organically modified SiO2-B2O3 gels displaying a high content of borosiloxane (=B-O-Si≡) bonds. Chemistry of Materials, 1999, 11(4):910-919.
DOI URL |
[24] |
SINGH S, SINGH V, VIJAYAKUMAR M, et al. Electrospun ZrO2 fibers obtained from polyvinyl alcohol/zirconium n-propoxide composite fibers processed through halide free Sol-Gel route using acetic acid as a stabilizer. Materials Letters, 2014, 115(15):64-67.
DOI URL |
[25] |
SU D, YAN X, LIU N, et al. Preparation and characterization of continuous SiZrOC fibers by polyvinyl pyrrolidone-assisted Sol-Gel process. Journal of Materials Science, 2016, 51(3):1418-1427.
DOI URL |
[26] |
FAVARO L, CORTE L, ROSCINI L, et al. A novel FTIR-based approach to evaluate the interactions between lignocellulosic inhibitory compounds and their effect on yeast metabolism. RSC Advances, 2016, 6(53):47981-47989.
DOI URL |
[27] | QIAN L, ZHONG Z, WANG S, et al. Interactions of biomass components during pyrolysis: a TG-FTIR study. Journal of Analytical & Applied Pyrolysis, 2011, 90(2):213-218. |
[28] |
YU Z, XU C, YUAN K, et al. Characterization and adsorption mechanism of ZrO2 mesoporous fibers for health-hazardous fluoride removal. Journal of Hazardous Materials, 2017, 346(15):82-92.
DOI URL |
[29] |
SHAO C, GUAN H, LIU Y, et al. A novel method for making ZrO2 nanofibres via an electrospinning technique. Journal of Crystal Growth, 2004, 267(1/2):380-384.
DOI URL |
[30] |
ZHONG Y, ZHANG J, WU X, et al. Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity, Journal of Sol-Gel Science and Technology, 2017, 84:129-134.
DOI URL |
[31] |
ZOU W, WANG X, YU W, et al. Opacifier embedded and fiber reinforced alumina-based aerogel composites for ultra-high temperature thermal insulation. Ceramics International, 2018, 45(1):644-650.
DOI URL |
[32] |
GAO M, LIU B, ZHAO P, et al. Mechanical strengths and thermal properties of titania-doped alumina aerogels and the application as high-temperature thermal insulator. Journal of Sol-Gel Science and Technology, 2019, 91(3):514-522.
DOI URL |
[33] |
LI H, CHEN Y, WANG P, et al. Porous carbon-bonded carbon fiber composites impregnated with SiO2-Al2O3 aerogel with enhanced thermal insulation and mechanical properties. Ceramics International, 2018, 44(3):3484-3487.
DOI URL |
[1] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[2] | 王新刚, 杨青青, 林根连, 高巍, 秦福林, 李荣臻, 康庄, 王小飞, 蒋丹宇, 闫继娜. 国产550级连续氧化铝陶瓷纤维的高温拉伸性能研究[J]. 无机材料学报, 2022, 37(6): 629-635. |
[3] | 刘城, 赵倩, 牟志伟, 雷洁红, 段涛. 新型铋基SiOCNF复合膜对放射性气态碘的吸附性能[J]. 无机材料学报, 2022, 37(10): 1043-1050. |
[4] | 王袁杰, 裴学良, 李好义, 徐鑫, 何流, 黄政仁, 黄庆. 自由基引发活性聚碳硅烷交联及其在制备SiC纤维中的应用[J]. 无机材料学报, 2021, 36(9): 967-973. |
[5] | 马玲玲, 常江. Nd掺杂硅酸钙及其复合电纺丝膜的制备及性能研究[J]. 无机材料学报, 2021, 36(9): 974-980. |
[6] | 李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600. |
[7] | 张晓山, 王兵, 吴楠, 韩成, 吴纯治, 王应德. 高温隔热用微纳陶瓷纤维研究进展[J]. 无机材料学报, 2021, 36(3): 245-256. |
[8] | 包峰, 常江. 硅酸钙纳米线复合电纺丝支架的制备及离子释放研究[J]. 无机材料学报, 2021, 36(11): 1199-1207. |
[9] | 朱正旺,冯锐,柳扬,张扬,谢文翰,董丽杰. 类鱼骨结构CoFe2O4纳米纤维的制备与性能[J]. 无机材料学报, 2020, 35(9): 1011-1016. |
[10] | 孙晓璐,宋肖飞,刘艳华,吴越,蔡以兵,赵宏梅. 电纺FeMnO3纳米纤维毛毡的制备及电化学性能研究[J]. 无机材料学报, 2019, 34(7): 709-714. |
[11] | 朱召贤, 王飞, 姚鸿俊, 董金鑫, 龙东辉. 遮光剂掺杂Al2O3-SiO2气凝胶/莫来石纤维毡复合材料的高温隔热性能研究[J]. 无机材料学报, 2018, 33(9): 969-975. |
[12] | 赵海雷, 孙振川, 陈馈, 王宏志, 杨延栋, 周建军, 李凤远, 张兵, 宋法亮. Ca0.68Si9Al3(ON)16 : Eu2+带状荧光纳米纤维的制备、性能及盾构盘型滚刀的磨损检测[J]. 无机材料学报, 2018, 33(8): 866-872. |
[13] | 崔博, 贾巍, 陈振华, 李耀刚, 张青红, 王宏志. CaSi2O2N2:Ce/Tb、Eu叠层纤维膜的制备及其荧光性能研究[J]. 无机材料学报, 2018, 33(4): 403-408. |
[14] | 杜海英, 姚朋军, 王兢, 孙炎辉, 于乃森, 张涛, 董良. 异质复合结构纳米纤维SnO2/ZnO的制备及其气敏特性研究[J]. 无机材料学报, 2018, 33(4): 453-461. |
[15] | 蔡建信, 李志鹏, 李巍, 赵鹏飞, 杨震宇, 吁霁. Fe2O3纳米纤维锂离子电池负极材料的制备及其电化学性能研究[J]. 无机材料学报, 2018, 33(3): 301-306. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||