无机材料学报 ›› 2022, Vol. 37 ›› Issue (1): 58-64.DOI: 10.15541/jim20210263
收稿日期:
2021-04-21
修回日期:
2021-07-02
出版日期:
2022-01-20
网络出版日期:
2021-07-12
通讯作者:
姚 伟, 研究员. E-mail: yaowei@qxslab.cn
作者简介:
张 弦(1989-), 男, 博士, 高级工程师. E-mail: zhangxian@qxslab.cn
基金资助:
ZHANG Xian(), ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei()
Received:
2021-04-21
Revised:
2021-07-02
Published:
2022-01-20
Online:
2021-07-12
Contact:
YAO Wei, professor. E-mail: yaowei@qxslab.cn
About author:
ZHANG Xian(1989-), male, PhD, senior engineer. E-mail: zhangxian@qxslab.cn
Supported by:
摘要:
光催化去除水体中的有机污染物在污水净化领域具有广阔的应用前景。本研究分别采用水热法和固相法合成了四元BiMnVO5可见光催化剂, 对催化剂的形貌结构和光学性质进行了表征分析, 并计算了其电子结构。结果表明, 水热法可以快速合成高纯度、高结晶度的BiMnVO5。BiMnVO5为直接带隙半导体, 禁带宽度为1.8 eV, 与第一性原理计算结果一致。态密度分析结果表明, 其光吸收可归因于从Mn3d/O2p到V3d的电子跃迁。光催化实验结果显示, 水热法合成的BiMnVO5催化剂的催化活性最高, 可见光照射4 h后, 亚甲基蓝的降解率为98%。羟基自由基和光生空穴是光催化过程中的主要活性物。经过5次循环利用后,该催化剂对亚甲基蓝的降解率仍可达85%, 且形貌结构不变, 表现出良好的稳定性。
中图分类号:
张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64.
ZHANG Xian, ZHANG Ce, JIANG Wenjun, FENG Deqiang, YAO Wei. Synthesis, Electronic Structure and Visible Light Photocatalytic Performance of Quaternary BiMnVO5[J]. Journal of Inorganic Materials, 2022, 37(1): 58-64.
图5 BiVO4、BMVO-S和BMVO-H催化剂的(a)紫外-可见-近红外漫反射光谱和(b) [F(R)hn]2随hn的变化曲线
Fig. 5 (a) UV-Vis diffuse reflection spectra and (b) [F(R)hn]2 vs hν curves of BMVO-S and BMVO-H photocatalysts
图8 (a)不同催化条件下MB浓度随时间变化曲线和(b)加入不同捕捉剂后MB浓度随时间变化曲线
Fig. 8 (a) Curves of MB concentration vs time under different catalytic conditions, and (b) curves of MB concentration vs time with different scavengers
图9 (a)BMVO-H样品可见光催化降解MB的重复试验, (b)5次循环后BMVO-H样品的SEM照片和 (c)5次循环前后BMVO-H样品的XRD图谱
Fig. 9 (a) Repeated test for visible light degradation of MB for BMVO-H sample, (b) SEM image of BMVO-H sample after 5 cycles, and (c) XRD patterns of BMVO-H sample before and after 5 cycles
[1] |
ZHAO C, CHEN Z, SHI R, et al. Recent advances in conjugated polymers for visible-light-driven water splitting. Advanced Materials, 2020, 32(28):1907296.
DOI URL |
[2] |
KIM T W, CHOI K S. Nanoporous BiVO4 photoanodes with dual- layer oxygen evolution catalysts for solar water splitting. Science, 2014, 343(6174):990-994.
DOI URL |
[3] |
YUAN D, SUN M, TANG S, et al. All-solid-state BiVO4/ZnIn2S4 Z-scheme composite with efficient charge separations for improved visible light photocatalytic organics degradation. Chinese Chemical Letters, 2020, 31(2):547-550.
DOI URL |
[4] |
CHEN Q, CHENG X, LONG H, et al. A short review on recent progress of Bi/semiconductor photocatalysts: the role of Bi metal. Chinese Chemical Letters, 2020, 31(10):2583-2590.
DOI URL |
[5] |
TOKUNAGA S, KATO H, KUDO A. Selective preparation of monoclinic and tetragonal BiVO4 with scheelite structure and their photocatalytic properties. Chemistry of Materials, 2001, 13(12):4624-4628.
DOI URL |
[6] |
ZHOU B, ZHAO X, LIU H, et al. Visible-light sensitive cobalt- doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B: Environmental, 2010, 99(1):214-221.
DOI URL |
[7] |
HE B, LI Z, ZHAO D, et al. Fabrication of porous Cu-doped BiVO4 nanotubes as efficient oxygen-evolving photocatalysts. ACS Applied Nano Materials, 2018, 1(6):2589-2599.
DOI URL |
[8] |
REGMI C, KSHETRI Y.K, KIM T H. et al. Visible-light-induced Fe-doped BiVO4 photocatalyst for contaminated water treatment. Molecular Catalysis, 2017, 432:220-231.
DOI URL |
[9] |
REGMI C, KSHETRI Y K, KIM T H, et al. Fabrication of Ni-doped BiVO4 semiconductors with enhanced visible-light photocatalytic performances for wastewater treatment. Applied Surface Science, 2017, 413:253-265.
DOI URL |
[10] |
LUO W, LI Z, YU T, et al. Effects of surface electrochemical pretreatment on the photoelectrochemical performance of Mo- doped BiVO4. The Journal of Physical Chemistry C, 2012, 116(8):5076-5081.
DOI URL |
[11] | LUO W, YANG Z, LI Z, et al. Solar hydrogen generation from seawater with a modified BiVO4 photoanode. Energy & Environmental Science, 2011, 4(10):4046-4051. |
[12] |
ZHONG D K, CHOI S, GAMELIN D R. Near-complete suppression of surface recombination in solar photoelectrolysis by “Co-Pi” catalyst-modified W:BiVO4. Journal of the American Chemical Society, 2011, 133(45):18370-18377.
DOI URL |
[13] |
ZHONG X, HE H, YANG M, et al. In3+-doped BiVO4 photoanodes with passivated surface states for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6(22):10456-10465.
DOI URL |
[14] |
USAI S, OBREGÓN S, BECERRO A I, et al. Monoclinic-tetragonal heterostructured BiVO4 by yttrium doping with improved photocatalytic activity. The Journal of Physical Chemistry C, 2013, 117(46):24479-24484.
DOI URL |
[15] |
GOVINDARAJU G V, MORBEC J M, GALLI G A, et al. Experimental and computational investigation of lanthanide ion doping on BiVO4 photoanodes for solar water splitting. The Journal of Physical Chemistry C, 2018, 122(34):19416-19424.
DOI URL |
[16] |
LUO Y, TAN G, DONG G, et al. Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Applied Surface Science, 2015, 324:505-511.
DOI URL |
[17] |
BAEK J H, GILL T M, ABROSHAN H, et al. Selective and efficient Gd-Doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Letters, 2019, 4(3):720-728.
DOI URL |
[18] |
RADOSAVLJEVIC I, HOWARD J A K, SLEIGHT A W. Synthesis and structure of two new bismuth cadmium vanadates, BiCdVO5 and BiCd2VO6, and structures of BiCa2AsO6 and BiMg2PO6. International Journal of Inorganic Materials, 2000, 2(6):543-550.
DOI URL |
[19] |
XUN X, YOKOCHI A, SLEIGHT A W. Synthesis and structure of BiMnVO5 and BiMnAsO5. Journal of Solid State Chemistry, 2002, 168(1):224-228.
DOI URL |
[20] |
ELIZIARIO NUNES S, WANG C H, SO K, et al. Bismuth zinc vanadate, BiZn2VO6: new crystal structure type and electronic structure. Journal of Solid State Chemistry, 2015, 222:12-17.
DOI URL |
[21] |
RADOSAVLJEVIC I, EVANS J S O, SLEIGHT A W. Synthesis and structure of bismuth copper vanadate, BiCu2VO6. Journal of Solid State Chemistry, 1998, 141(1):149-154.
DOI URL |
[22] |
HUANG J, SLEIGHT A W. Synthesis, crystal structure, and optical properties of a new bismuth magnesium vanadate: BiMg2VO6. Journal of Solid State Chemistry, 1992, 100(1):170-178.
DOI URL |
[23] |
RADOSAVLJEVIC I, EVANS J S O, SLEIGHT A W. Synthesis and structure of BiCa2VO6. Journal of Solid State Chemistry, 1998, 137(1):143-147.
DOI URL |
[24] |
BHIM A, SASMAL S, GOPALAKRISHNAN J, et al. Visible- light-activated C-C bond cleavage and aerobic oxidation of benzyl alcohols employing BiMXO5 (M=Mg, Cd, Ni, Co, Pb, Ca and X=V, P). Chemistry - An Asian Journal, 2020, 15(19):3104-3115.
DOI URL |
[25] |
LIU H, NAKAMURA R, NAKATO Y. Bismuth-copper vanadate BiCu2VO6 as a novel photocatalyst for efficient visible-light-driven oxygen evolution. ChemPhysChem, 2005, 6(12):2499-2502.
DOI URL |
[26] |
VAN ELP J, POTZE R H, ESKES H, et al. Electronic structure of MnO. Physical Review B, 1991, 44(4):1530-1537.
DOI URL |
[27] |
MASSIDDA S, CONTINENZA A, POSTERNAK M, et al. Band- structure picture for MnO reexplored: a model GW calculation. Physical Review Letters, 1995, 74(12):2323-2326.
DOI URL |
[28] |
COOPER J K, GUL S, TOMA F M, et al. Electronic structure of monoclinic BiVO4. Chemistry of Materials, 2014, 26(18):5365-5373.
DOI URL |
[29] | BLAHA P, SCHWARZ K, MADSEN G K H, et al. WIEN2k, an augmented plane wave+ local orbitals program for calculating crystal properties. 2001. |
[30] |
PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple. Physical Review Letters, 1996, 77(18):3865-3868.
DOI URL |
[31] |
BLÖCHL P E. Projector augmented-wave method. Physical Review B, 1994, 50(24):17953-17979.
DOI URL |
[32] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999, 59(3):1758-1775.
DOI URL |
[33] |
JIANG Z, LIU Y, JING T, et al. Enhancing the photocatalytic activity of BiVO4 for oxygen evolution by Ce doping: Ce3+ ions as hole traps. The Journal of Physical Chemistry C, 2016, 120(4):2058-2063.
DOI URL |
[34] |
PALANISELVAM T, SHI L, METTELA G, et al. Vastly enhanced BiVO4 photocatalytic OER performance by NiCoO2 as cocatalyst. Advanced Materials Interfaces, 2017, 4(19):1700540.
DOI URL |
[35] |
YAO X, ZHAO X, HU J, et al. The self-passivation mechanism in degradation of BiVO4 photoanode. iScience, 2019, 19:976-985.
DOI URL |
[36] |
BIESINGER M C, PAYNE B P, GROSVENOR A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Applied Surface Science, 2011, 257(7):2717-2730.
DOI URL |
[37] |
LI M, LEI W, YU Y, et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities. Nanoscale, 2018, 10(34):15926-15931.
DOI URL |
[38] | KORTÜM G, BRAUN W, HERZOG G. Principles and techniques of diffuse-reflectance spectroscopy. Angewandte Chemie International Edition, 1963, 2(7):333-341. |
[1] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[2] | 姚仪帅, 郭瑞华, 安胜利, 张捷宇, 周国治, 张国芳, 黄雅荣, 潘高飞. 原位负载Pt-Co高指数晶面催化剂的制备及其电催化性能[J]. 无机材料学报, 2023, 38(1): 71-78. |
[3] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[4] | 陈瀚翔, 周敏, 莫曌, 宜坚坚, 李华明, 许晖. CoN/g-C3N4 0D/2D复合结构及其光催化制氢性能研究[J]. 无机材料学报, 2022, 37(9): 1001-1008. |
[5] | 薛虹云, 王聪宇, MAHMOOD Asad, 于佳君, 王焱, 谢晓峰, 孙静. 二维g-C3N4与Ag-TiO2复合光催化剂降解气态乙醛抗失活研究[J]. 无机材料学报, 2022, 37(8): 865-872. |
[6] | 文志勤, 黄彬荣, 卢涛仪, 邹正光. 压力对PbTiO3结构和热物性质影响的第一性原理研究[J]. 无机材料学报, 2022, 37(7): 787-794. |
[7] | 洪佳辉, 马冉, 仵云超, 文涛, 艾玥洁. MOFs自牺牲模板法制备CoNx/g-C3N4纳米材料用作高效光催化还原U(VI)[J]. 无机材料学报, 2022, 37(7): 741-749. |
[8] | 迟聪聪, 屈盼盼, 任超男, 许馨, 白飞飞, 张丹洁. SiO2@Ag@SiO2@TiO2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7): 750-756. |
[9] | 王晓俊, 许文, 刘润路, 潘辉, 朱申敏. 水凝胶负载的纳米银/氮化碳光催化剂的制备及性能研究[J]. 无机材料学报, 2022, 37(7): 731-740. |
[10] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[11] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[12] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[13] | 王潇, 朱智杰, 吴之怡, 张城城, 陈志杰, 肖梦琦, 李超然, 何乐. 钴等离激元超结构粉体催化剂的制备及其光热催化应用[J]. 无机材料学报, 2022, 37(1): 22-28. |
[14] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[15] | 刘雪晨, 曾滴, 周沅逸, 王海鹏, 张玲, 王文中. 改性氮化碳光催化剂在生物质氧化反应中的应用[J]. 无机材料学报, 2022, 37(1): 38-44. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||