无机材料学报 ›› 2022, Vol. 37 ›› Issue (1): 38-44.DOI: 10.15541/jim20210262
• 专栏: CO 2 绿色转化(特邀编辑: 欧阳述昕, 王文中) • 上一篇 下一篇
刘雪晨1(), 曾滴1,2, 周沅逸1,2, 王海鹏1,2, 张玲1,2(), 王文中1,2,3()
收稿日期:
2021-04-20
修回日期:
2021-06-23
出版日期:
2022-01-20
网络出版日期:
2021-06-30
通讯作者:
张 玲, 副教授. E-mail: lingzhang@mail.sic.ac.cn; 王文中, 教授. E-mail: wzwang@mail.sic.ac.cn
作者简介:
刘雪晨(1996-), 女, 硕士研究生. E-mail: xuechen1215@shu.edu.cn
基金资助:
LIU Xuechen1(), ZENG Di1,2, ZHOU Yuanyi1,2, WANG Haipeng1,2, ZHANG Ling1,2(), WANG Wenzhong1,2,3()
Received:
2021-04-20
Revised:
2021-06-23
Published:
2022-01-20
Online:
2021-06-30
Contact:
ZHANG Ling, associate professor. E-mail: lingzhang@mail.sic.ac.cn; WANG Wenzhong, professor. E-mail: wzwang@mail.sic.ac.cn
About author:
LIU Xuechen(1996-), female, Master candidate. E-mail: xuechen1215@shu.edu.cn
Supported by:
摘要:
利用氮化碳光催化剂催化生物质选择性转化, 不仅扩展了非金属催化剂的应用领域, 而且能够缓解化工产品过度依赖于化石能源的现状。2,5-二甲酰基呋喃是生产多种化工产品的关键中间体, 本研究将均苯四甲酸二酐引入氮化碳骨架, 并利用H2O2进行处理, 制备了含有氮羟基的改性氮化碳光催化剂, 并探究其在可见光激发下将生物质平台分子5-羟甲基糠醛通过绿色化学的方法选择性地氧化为2,5-二甲酰基呋喃的性能。结果表明:经过H2O2改性的催化剂, 在可见光激发下可以产生氮氧自由基, 使得底物分子侧链上的羟基选择性地氧化为醛基, 避免了在水相光催化条件下可能产生的多种活性氧物种引起的开环、矿化反应等副反应。特别是, 当光催化剂前驱体中蜜勒胺与均苯四甲酸二酐的比例为1 : 2时, 在400 nm LED光源激发下, 目标产物的选择性可达到96.2%。
中图分类号:
刘雪晨, 曾滴, 周沅逸, 王海鹏, 张玲, 王文中. 改性氮化碳光催化剂在生物质氧化反应中的应用[J]. 无机材料学报, 2022, 37(1): 38-44.
LIU Xuechen, ZENG Di, ZHOU Yuanyi, WANG Haipeng, ZHANG Ling, WANG Wenzhong. Selective Oxidation of Biomass over Modified Carbon Nitride Photocatalysts[J]. Journal of Inorganic Materials, 2022, 37(1): 38-44.
图1 不同制备条件下获得样品的XRD谱图
Fig. 1 XRD patterns of samples prepared at different conditions (a) Sample PI (1:1) and its precursor PMDA and melem; (b) Samples PI (1:1), PI (2:1), PI (1:2), and PI (1:2)-120
图3 不同样品的XPS谱图(C1s)(a~d)和PI样品的结构简图(e)(不同颜色的C原子与XPS谱图对应)
Fig. 3 XPS spectra of different samples (C1s)(a-d), and structural illustration of PI sample (e) (different colors of C atoms correspond to XPS spectra) (a) PI (1:1); (b) PI (1:1)-120; (c) PI (1:2); (d) PI (1:2)-120; Colorful figures are available on website
图4 不同样品的O2-TPD图(a), 紫外-可见漫反射图(b)及光电流图谱(c)
Fig. 4 O2-TPD (a), UV-Vis diffuse reflectance spectra (b) and photocurrent profiles (c) of different samples Colorful figures are available on website
Entry | Catalyst | Con./% | Sel./% |
---|---|---|---|
1[a] | C3N4 | 62.8 | 13.5 |
2[a] | Melem | 69.9 | 12.4 |
3[a] | PI (1:1) | 72.4 | 16.4 |
4[a] | PI (2:1) | 94.6 | 3.4 |
5[a] | PI (1:2) | 72.0 | 19.3 |
6[a] | PI (1:1)-120 | 14.7 | 57.3 |
7[a] | PI (1:2)-120 | 22.3 | 67.8 |
8[b] | PI (1:2)-120 | 53.3 | 96.2 |
9[c] | PI (1:2) | 85.9 | 9.7 |
表1 不同催化剂对HMF催化氧化的实验结果
Table 1 Experimental results of catalytic oxidation of HMF by different catalysts
Entry | Catalyst | Con./% | Sel./% |
---|---|---|---|
1[a] | C3N4 | 62.8 | 13.5 |
2[a] | Melem | 69.9 | 12.4 |
3[a] | PI (1:1) | 72.4 | 16.4 |
4[a] | PI (2:1) | 94.6 | 3.4 |
5[a] | PI (1:2) | 72.0 | 19.3 |
6[a] | PI (1:1)-120 | 14.7 | 57.3 |
7[a] | PI (1:2)-120 | 22.3 | 67.8 |
8[b] | PI (1:2)-120 | 53.3 | 96.2 |
9[c] | PI (1:2) | 85.9 | 9.7 |
图5 氮氧自由基的检测及催化机理分析
Fig. 5 Nitrogen oxide radical detection and catalytic mechanism analysis (a) FT-IR spectra of PI (1:2) and PI (1:2)-120; (b) In situ FT-IR spectra of PI (1:2)-120 illuminated in air; (c) Absorption intensity versus time for catalyst suspensions with 4 mmol/L HMF added
图6 PI催化剂在H2O2处理前后可能的结构变化及其催化氧化HMF可能的机制
Fig. 6 Possible structural changes in PI catalysts before and after H2O2 treatment and their possible mechanism for catalytic oxidation of HMF
图S2 不同样品的Mott-Schottky图(a, b), 基于紫外-可见漫反射的带隙估算图(c), 基于VB XPS的价带位置估算图(d)以及催化剂能带位置示意图(e)
Fig. S2 Mott-Schottky spectra (a, b), estimated bandgap based on UV-Vis diffuse reflectance (c), valence band position estimation based on VB XPS (d), schematic diagram of catalyst energy band position (e) of different samples
图S3 (a)测试反应后甲臜的吸光度对比超氧自由基产量; (b)羟基自由基产量对比; (c)H2O2的产量对比
Fig. S3 (a) Comparison of absorbance of methanone after testing the superoxide radical reaction; (b) Comparison of the yields of OH; (c) Comparison of the yields of H2O2 Experimental condition: 50 mg Catalyst, 30 mL deionized water, atmospheric pressure: air atmosphere, 15 ℃, reaction time: 1 h (Fig. S3(a) concentration of NBT solution=0.2 mmol/L)
图S4 PI(1 : 2)-120催化剂的循环实验
Fig. S4 Cycling experiments of PI(1 : 2)-120 catalyst Experimental conditions: 50 mg PI(1:2)-120 catalyst, 400 nm LED lamp, 30 mL 0.67 mmol/L HMF aqueous solution, atmospheric pressure air, reaction for 12 h at 15 ℃
[1] |
XU S, ZHOU P, ZHANG Z, et al. Selective oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid using O2 and a photocatalyst of co-thioporphyrazine bonded to g-C3N4. Journal of the American Chemical Society, 2017, 139(41):14775-14782.
DOI URL |
[2] | NENG L, ZHOUZHOU K, XINGZHU C, et al. Research progress of novel two-dimensional materials in photocatalysis and electrocatalysis. Journal of Inorganic Materials, 2020, 35(7):735-747. |
[3] |
XIAO C, ZHANG L, WANG K, et al. A new approach to enhance photocatalytic nitrogen fixation performance via phosphate-bridge: a case study of SiW12/K-C3N4. Applied Catalysis B-Environmental, 2018, 239:260-267.
DOI URL |
[4] |
ZHANG S, ZOU Y T, CHEN Z S, et al. Visible-light-driven activation of persulfate by RGO/g-C3N4 composites for degradation of BPA in wastewater. Journal of Inorganic Materials, 2020, 35(3):329-336.
DOI |
[5] |
WU Q, HE Y, ZHANG H, et al. Photocatalytic selective oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran on metal-free g-C3N4 under visible light irradiation. Molecular Catalysis, 2017, 436:10-18.
DOI URL |
[6] | CHENG L, ZHANG Y, ZHU Y, et al. Selective oxidation of HMF. Progress in Chemistry, 2021, 33(2):318-330. |
[7] |
HU L, LIN L, WU Z, et al. Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renewable and Sustainable Energy Reviews, 2017, 74:230-257.
DOI URL |
[8] | YURDAKAL S, TEK B S, ALAGÖZ O, et al. Photocatalytic selective oxidation of 5-(hydroxymethyl)-2-furaldehyde to 2,5-furandicarbaldehyde in water by using anatase, rutile, and brookite TiO2 nanoparticles. ACS Sustainable Chemistry & Engineering, 2013, 1(5):456-461. |
[9] |
KRIVTSOV I, GARCíA-L ÓPEZ E I, MARCì G, et al. Selective photocatalytic oxidation of 5-hydroxymethyl-2-furfural to 2,5-furandicarboxyaldehyde in aqueous suspension of g-C3N4. Applied Catalysis B: Environmental, 2017, 204:430-439.
DOI URL |
[10] |
LI S, SU K, LI Z, et al. Selective oxidation of 5-hydroxymethylfurfural with H2O2 catalyzed by a molybdenum complex. Green Chemistry, 2016, 18(7):2122-2128.
DOI URL |
[11] |
CHU S, PAN Y, WANG Y, et al. Polyimide-based photocatalysts: rational design for energy and environmental applications. Journal of Materials Chemistry A, 2020, 8(29):14441-14462.
DOI URL |
[12] |
CHU S, WANG Y, GUO Y, et al. Band structure engineering of carbon nitride: in search of a polymer photocatalyst with high photooxidation property. ACS Catalysis, 2013, 3(5):912-919.
DOI URL |
[13] |
KOFUJI Y, ISOBE Y, SHIRAISHI Y, et al. Carbon nitride- aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. Journal of the American Chemical Society, 2016, 138(31):10019-10025.
DOI URL |
[14] |
YANG C, FOLENS K, DU LAING G, et al. Improved quantum yield and excellent luminescence stability of europium-incorporated polymeric hydrogen-bonded heptazine frameworks due to an efficient hydrogen-bonding effect. Advanced Functional Materials, 2020, 30(39):2003656.
DOI URL |
[15] |
CUI Z, ZHOU J, LIU T, et al. Porphyrin-containing polyimide with enhanced light absorption and photocatalysis activity. Chemistry, an Asian Journal, 2019, 14(12):2138-2148.
DOI URL |
[16] |
BAI J, SUN Y, LI M, et al. The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment. Diamond and Related Materials, 2018, 87:1-9.
DOI URL |
[17] |
KOFUJI Y, OHKITA S, SHIRAISHI Y, et al. Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catalysis, 2016, 6(10):7021-7029.
DOI URL |
[18] |
NG Y H, IWASE A, KUDO A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. The Journal of Physical Chemistry Letters, 2010, 1(17):2607-2612.
DOI URL |
[19] |
WANG H, JIANG S, CHEN S, et al. Insights into the excitonic processes in polymeric photocatalysts. Chemical Science, 2017, 8(5):4087-4092.
DOI URL |
[20] | HUI W, DONG Z X, YI X. Recent progresses on the photoexcitation processes of polymeric carbon nitride-based materials. Chinese Journal of Inorganic Chemistry, 2017, 33(11):1897-1913. |
[21] |
WANG H, JIANG S, CHEN S, et al. Enhanced singlet oxygen generation in oxidized graphitic carbon nitride for organic synthesis. Advanced Materials, 2016, 28(32):6940-6945.
DOI URL |
[22] |
ZHANG C, HUANG Z, LU J, et al. Generation and confinement of long-lived N-oxyl radical and its photocatalysis. Journal of the American Chemical Society, 2018, 140(6):2032-2035.
DOI URL |
[23] |
ZHAO G, HU B, BUSSER G W, et al. Photocatalytic oxidation of alpha-C-H bonds in unsaturated hydrocarbons through a radical pathway induced by a molecular cocatalyst. ChemSusChem, 2019, 12(12):2795-2801.
DOI URL |
[24] |
KASHPAROVA V P, KLUSHIN V A, LEONTYEVA D V, et al. Selective synthesis of 2,5-diformylfuran by sustainable 4-acetamido- TEMPO/halogen-mediated electro-oxidation of 5-hydroxymethylfurfural. Chemistry, an Asian Journal, 2016, 11(18):2578-2585.
DOI URL |
[25] |
LIU G, TANG R, WANG Z. Metal-free allylic oxidation with molecular oxygen catalyzed by g-C3N4 and N-hydroxyphthalimide. Catalysis Letters, 2014, 144(4):717-722.
DOI URL |
[26] | KOFUJI Y, OHKITA S, SHIRAISHI Y, et al. Mellitic triimide- doped carbon nitride as sunlight-driven photocatalysts for hydrogen peroxide production. ACS Sustainable Chemistry & Engineering, 2017, 5(8):6478-6485. |
[27] |
HU K, TANG J, CAO S, et al. TEMPO-Functionalized aromatic polymer as a highly active, pH-responsive polymeric interfacial catalyst for alcohol oxidation. The Journal of Physical Chemistry C, 2019, 123(14):9066-9073.
DOI URL |
[28] |
FRANCHI P, LUCARINI M, PEDRIELLI P, et al. Nitroxide radicals as hydrogen bonding acceptors. an infrared and EPR study. ChemPhysChem, 2002, 3:789-793.
DOI URL |
[29] |
KOMPANETS M O, KUSHCH O V, LITVINOV Y E, et al. Oxidation of 5-hydroxymethylfurfural to 2,5-diformylfuran with molecular oxygen in the presence of N-hydroxyphthalimide. Catalysis Communications, 2014, 57:60-63.
DOI URL |
[30] |
RECUPERO F, PUNTA C. Free radical functionalization of organic compounds catalyzed by N-hydroxyphthalimide. Chemical Reviews, 2007, 107:3800-3842.
DOI URL |
[31] |
HAO H, SHI J L, XU H, et al. N-hydroxyphthalimide-TiO2 complex visible light photocatalysis. Applied Catalysis B: Environmental, 2019, 246:149-155.
DOI URL |
[1] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[2] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[3] | 陈瀚翔, 周敏, 莫曌, 宜坚坚, 李华明, 许晖. CoN/g-C3N4 0D/2D复合结构及其光催化制氢性能研究[J]. 无机材料学报, 2022, 37(9): 1001-1008. |
[4] | 薛虹云, 王聪宇, MAHMOOD Asad, 于佳君, 王焱, 谢晓峰, 孙静. 二维g-C3N4与Ag-TiO2复合光催化剂降解气态乙醛抗失活研究[J]. 无机材料学报, 2022, 37(8): 865-872. |
[5] | 洪佳辉, 马冉, 仵云超, 文涛, 艾玥洁. MOFs自牺牲模板法制备CoNx/g-C3N4纳米材料用作高效光催化还原U(VI)[J]. 无机材料学报, 2022, 37(7): 741-749. |
[6] | 迟聪聪, 屈盼盼, 任超男, 许馨, 白飞飞, 张丹洁. SiO2@Ag@SiO2@TiO2核壳结构的制备及其光催化降解性能[J]. 无机材料学报, 2022, 37(7): 750-756. |
[7] | 王晓俊, 许文, 刘润路, 潘辉, 朱申敏. 水凝胶负载的纳米银/氮化碳光催化剂的制备及性能研究[J]. 无机材料学报, 2022, 37(7): 731-740. |
[8] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[9] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[10] | 张弦, 张策, 姜文君, 冯德强, 姚伟. 四元BiMnVO5的合成、电子结构与可见光催化性能研究[J]. 无机材料学报, 2022, 37(1): 58-64. |
[11] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[12] | 王潇, 朱智杰, 吴之怡, 张城城, 陈志杰, 肖梦琦, 李超然, 何乐. 钴等离激元超结构粉体催化剂的制备及其光热催化应用[J]. 无机材料学报, 2022, 37(1): 22-28. |
[13] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[14] | 王路平, 卢占会, 魏鑫, 方明, 王祥科. 改进的灰色模型在光催化数据预测中的应用[J]. 无机材料学报, 2021, 36(8): 871-876. |
[15] | 蔡苗, 陈子航, 曾实, 杜江慧, 熊娟. CuS纳米片修饰Bi5O7I复合材料用于光催化还原Cr(VI)水溶液[J]. 无机材料学报, 2021, 36(6): 665-672. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||