[1] |
XU Y F, ELCORO L, SONG Z D, et al. High-throughput calculations of magnetic topological materials. Nature, 2020, 586(7831):702-707.
DOI
URL
|
[2] |
SHEN Z H, WANG J J, LIN Y H, et al. High-throughput phase-field design of high-energy-density polymer nanocomposites. Advanced Materials, 2018, 30(2): 1704380-1-6.
|
[3] |
GAN L T, YANG R, TRAYLOR R, et al. High-throughput growth of microscale gold bicrystals for single-grain-boundary studies. Advanced Materials, 2019, 31(32): 1902189-1-7.
|
[4] |
SEOL M, LEE M H, KIM H, et al. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Advanced Materials, 2020, 32(42): 2003542-1-8.
|
[5] |
JIANG J K, SHEA G, RASTOGI P, et al. Continuous high- throughput fabrication of architected micromaterials via in-air photopolymerization. Advanced Materials, 2021, 33(3): 2006336-1-9.
|
[6] |
LI J H, DU P P, LI S R, et al. High-throughput combinatorial optimizations of perovskite light-emitting diodes based on all-vacuum deposition. Advanced Functional Materials, 2019, 29(51): 1903607-1-8.
|
[7] |
ZHANG Z M, LINDLEY S A, GUEVARRA D, et al. Fermi level engineering of passivation and electron transport materials for p-type CuBi2O4 employing a high-throughput methodology. Advanced Functional Materials, 2020, 30(24): 2000948-1-12.
|
[8] |
LIN B H, HEDRICK J L, PARK N H, et al. Programmable high-throughput platform for the rapid and scalable synthesis of polyester and polycarbonate libraries. Journal of the American Chemical Society, 2019, 141(22):8921-8927.
DOI
URL
|
[9] |
DAHL J C, WANG X Z, HUANG X, et al. Elucidating the weakly reversible Cs-Pb-Br perovskite nanocrystal reaction network with high-throughput maps and transformations. Journal of the American Chemical Society, 2020, 142(27):11915-11926.
DOI
URL
|
[10] |
WANG H Y, JING Z, LIU H L, et al. A high-throughput assessment of the adsorption capacity and Li-ion diffusion dynamics in Mo-based ordered double-transition-metal MXenes as anode materials for fast-charging LIBs. Nanoscale, 2020, 12(48):24510-24526.
DOI
URL
|
[11] |
MENG Q B, ZHOU X L, LI J H, et al. High-throughput laser fabrication of Ti-6Al-4V alloy: Part I. Numerical investigation of dynamic behavior in molten Pool. Journal of Manufacturing Processes, 2020, 59:509-522.
DOI
URL
|
[12] |
REN Y M, ZHANG Y C, DING Y Y, et al. Computational fluid dynamics-based in-situ sensor analytics of direct metal laser solidification process using machine learning. Computers & Chemical Engineering, 2020, 143: 107069-1-14.
|
[13] |
HOLDER D, WEBER R, ROCKER C, et al. High-quality high-throughput silicon laser milling using a 1 kW sub-picosecond laser. Optics Letters, 2021, 46(2):384-387.
DOI
URL
|
[14] |
SHIN S, HUR J G, PARK J K, et al. Thermal damage free material processing using femtosecond laser pulses for fabricating fine metal masks: influences of laser fluence and pulse repetition rate on processing quality. Optics and Laser Technology, 2021, 134: 106618-1-8.
|
[15] |
GONG X Y, YABANSU Y C, COLLINS P C, et al. Evaluation of Ti-Mn alloys for additive manufacturing using high-throughput experimental assays and Gaussian process regression. Materials, 2020, 20(13): 4641-1-19.
|
[16] |
MINCUZZI G, REBIERE A, FAUCON M, et al. Beam engineering strategies for high throughput, precise, micro-cutting by 100 W, femtosecond lasers. Journal of Laser Applications, 2020, 32(4): 042003-1-8.
|
[17] |
HUH D, KIM W, KIM K, et al. Enhancing light conversion efficiency of YAG:Ce phosphor substrate using nanoimprinted functional structures. Nanotechnology, 2020, 31(14): 144003-1-5.
|
[18] |
XU YW, CHEN J, ZHANG H, et al. White-light-emitting flexible display devices based on double network hydrogels crosslinked by YAG:Ce phosphors. Journal of Materials Chemistry C, 2020, 8(1):247-252.
DOI
URL
|
[19] |
TUCUREANU V, ROMANITAN C, TUDOR I A, et al. Effect of process parameters on YAG:Ce phosphor properties obtained by co-precipitation method. Ceramics International, 2020, 46(15):23802-23812.
DOI
URL
|
[20] |
CHUNG D N, HIEU D N, THAO T T, et al. Synthesis and characterization of Ce-doped Y3Al5O12 (YAG:Ce) nanopowders used for solid-state lighting. Journal of Nanomaterials, 2014, 2014: 571920-1-7.
|