无机材料学报 ›› 2021, Vol. 36 ›› Issue (12): 1270-1276.DOI: 10.15541/jim20210146
所属专题: 【信息功能】电介质材料
董昌1,2(), 梁瑞虹1,3(), 周志勇1,3, 董显林1,3
收稿日期:
2021-03-11
修回日期:
2021-04-22
出版日期:
2021-12-20
网络出版日期:
2021-06-10
通讯作者:
梁瑞虹, 研究员. E-mail: liangruihong@mail.sic.ac.cn
作者简介:
董 昌(1997-), 男, 硕士研究生. E-mail: cdong@mail.ustc.edu.cn
基金资助:
DONG Chang1,2(), LIANG Ruihong1,3(), ZHOU Zhiyong1,3, DONG Xianlin1,3
Received:
2021-03-11
Revised:
2021-04-22
Published:
2021-12-20
Online:
2021-06-10
Contact:
LIANG Ruihong, professor. E-mail: liangruihong@mail.sic.ac.cn
About author:
DONG Chang (1997-), male, Master candidate. E-mail: cdong@mail.ustc.edu.cn
Supported by:
摘要:
锆钛酸铅(PZT)基压电陶瓷是一类应用非常广泛的功能材料, 可应用于水声换能器、压电马达、医疗超声换能器以及声表面波滤波器等。通过改性提高PZT基压电陶瓷的压电性能一直是该领域的研究热点。本工作采用传统固相反应法制备了准同型相界(Morphotropic Phase Boundary, MPB)组分的Sm-0.25PMN-0.75PZT压电陶瓷, 并对其微观结构以及宏观性能进行了系统研究。研究结果表明:引入Sm3+可以增强压电陶瓷的局域结构异质性, 提升介电响应从而提高压电性能。当Sm3+引入过多时, 铁电极化的长程连续性被大面积打断, 压电性能下降。本实验中得到的最优组分压电陶瓷性能为:高压电系数d33~824 pC/N, 高压电电压常数g33~27.1×10-3 m2/C和相对较高居里温度TC~178 ℃, 电致应变在室温至150 ℃范围内低于5%, 有较好的温度稳定性, 是极具应用前景的高性能压电材料。
中图分类号:
董昌, 梁瑞虹, 周志勇, 董显林. Sm掺杂增强PZT基弛豫型铁电陶瓷压电性能研究[J]. 无机材料学报, 2021, 36(12): 1270-1276.
DONG Chang, LIANG Ruihong, ZHOU Zhiyong, DONG Xianlin. Piezoelectric Property of PZT-based Relaxor-ferroelectric Ceramics Enhanced by Sm Doping[J]. Journal of Inorganic Materials, 2021, 36(12): 1270-1276.
图1 ySm-0.25PMN-0.75PZT陶瓷的表面、断面形貌及晶粒尺寸分布图
Fig. 1 Surface and cross sectional SEM images and grain size distributions of ySm-0.25PMN-0.75PZT ceramics (a) y=0; (b) y=0.4%; (c) y=0.8%; (d) y=1.2%
图3 ySm-0.25PMN-0.75PZT陶瓷在压电力显微镜下的畴随Sm含量的演变图
Fig. 3 PFM phase images (2 μm×2 μm) of ySm-0.25PMN-0.75PZT ceramics (a) y=0; (b) y=0.4%; (c) y=0.8%; (d) y=1.2%
图4 ySm-0.25PMN-0.75PZT陶瓷在(a)y=0, (b)y=0.4%, (c)y=0.8%, (d)y=1.2%的介电温谱曲线@100 Hz~1 MHz; (e)各组分介电温谱对比图@1 kHz
Fig. 4 Temperature dependence of dielectric constant and dielectric loss of ySm-0.25PMN-0.75PZT ceramics (a) y=0, (b) y=0.4%, (c) y=0.8%, (d) y=1.2% @100 Hz-1 MHz; (e) y=0, 0.4%, 0.8%, 1.2%@1 kHz
y | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | tanδ | Ec/(kV·mm-1) | Pr/(μC·cm-2) | Tc@1kHz/℃ | kp | kt | k33 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 543 | 24.8 | 2475 | 0.028 | 0.77 | 42.5 | 199 | 0.58 | 0.41 | 0.67 |
0.4% | 824 | 27.1 | 3434 | 0.032 | 0.80 | 38.7 | 178 | 0.67 | 0.52 | 0.77 |
0.8% | 678 | 20.5 | 3744 | 0.039 | 0.88 | 27.2 | 156 | 0.59 | 0.46 | 0.70 |
1.2% | 522 | 13.9 | 4239 | 0.041 | 0.76 | 24.9 | 144 | 0.43 | 0.33 | 0.52 |
表1 ySm-0.25PMN-0.75PZT陶瓷的综合性能表
Table 1 Comprehensive property of ySm-0.25PMN-0.75PZT ceramics
y | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | tanδ | Ec/(kV·mm-1) | Pr/(μC·cm-2) | Tc@1kHz/℃ | kp | kt | k33 |
---|---|---|---|---|---|---|---|---|---|---|
0 | 543 | 24.8 | 2475 | 0.028 | 0.77 | 42.5 | 199 | 0.58 | 0.41 | 0.67 |
0.4% | 824 | 27.1 | 3434 | 0.032 | 0.80 | 38.7 | 178 | 0.67 | 0.52 | 0.77 |
0.8% | 678 | 20.5 | 3744 | 0.039 | 0.88 | 27.2 | 156 | 0.59 | 0.46 | 0.70 |
1.2% | 522 | 13.9 | 4239 | 0.041 | 0.76 | 24.9 | 144 | 0.43 | 0.33 | 0.52 |
Ceramic | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | Tc@1kHz/℃ | Ref. |
---|---|---|---|---|---|
Sm-PMN-PT | 1510 | 13.1 | 13000 | 89 | [ |
PMN-PT | 663 | 14.2 | 5260 | 159 | [ |
PZT5H | 590 | 19.6 | 3400 | 193 | [ |
0.4%Sm-0.25PMN-0.75PZT | 824 | 27.1 | 3434 | 177 | This work |
表2 本研究与文献报道的压电陶瓷性能对比
Table 2 Comparison of properties between ceramics in this work and literature
Ceramic | d33/(pC·N-1) | g33/(×10-3, m2·C-1) | εr | Tc@1kHz/℃ | Ref. |
---|---|---|---|---|---|
Sm-PMN-PT | 1510 | 13.1 | 13000 | 89 | [ |
PMN-PT | 663 | 14.2 | 5260 | 159 | [ |
PZT5H | 590 | 19.6 | 3400 | 193 | [ |
0.4%Sm-0.25PMN-0.75PZT | 824 | 27.1 | 3434 | 177 | This work |
图6 ySm-0.25PMN-0.75PZT陶瓷的介电常数-温度曲线 @1 kHz(从低温至室温)
Fig. 6 Temperature dependences of dielectric constant of ySm-0.25PMN-0.75PZT@1 kHz from cryogenic temperature to room temperature
图7 0.4%Sm-0.25PMN-0.75PT陶瓷各性能随温度的变化图
Fig. 7 Temperature dependence of properties for 0.4%Sm- 0.25PMN-0.75PZT ceramics (a) Piezoelectric coefficient, dielectric constant, residual polarization; (b) Field-induced longitudinal strain
[1] | JAFFE B, COOK W R, JAFFE H. Piezoelectric Ceramics. London: Academic Press, 1971. |
[2] |
KIM N, HUEBNER W, JANG S, et al. Dielectric and piezoelectric properties of lanthanum-modified lead magnesium niobium-lead titanate ceramics. Ferroelectrics, 1989, 93(1): 341-349.
DOI URL |
[3] |
TURNER R C, FUIERER P A, NEWNHAM R E, et al. Materials for high temperature acoustic and vibration sensors: a review. Applied Acoustics, 1994, 41(4): 299-324.
DOI URL |
[4] | CROSS L E, NEWNHAM R E. History of ferroelectrics. Ceramics Civilization, 1987, 3: 289-305. |
[5] |
DAMJANOVIC D. Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Reports on Progress in Physics, 1998, 61(9): 1267-1324.
DOI URL |
[6] | ZHANG S, XIA R, SHROUT T R. Lead-free piezoelectric ceramics vs. PZT? Journal of Electroceramics, 2007, 19(4): 251-257. |
[7] |
PARK S E, SHROUT T R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. Journal of Applied Physics, 1997, 82(4): 1804-1811.
DOI URL |
[8] |
NOHEDA B, COX D E, SHIRANE G, et al. A monoclinic ferroelectric phase in the Pb(Zr1-xTix)O3 solid solution. Applied Physics Letters, 1999, 74(14): 2059-2061.
DOI URL |
[9] |
GUO R, CROSS L E, PARK S E, et al. Origin of the high piezoelectric response in PbZr1-xTixO3. Physical Review Letters, 2000, 84(23): 5423-5426.
DOI URL |
[10] |
GENE H. Ferroelectric ceramics: history and technology. Journal of the American Ceramic Society, 1999, 82(4): 797-818.
DOI URL |
[11] |
LI P, ZHAI J, SHEN B, et al. Ultrahigh piezoelectric properties in textured (K, Na) NbO3-based lead-free ceramics. Advanced Materials, 2018, 30(8): 1705171.
DOI URL |
[12] |
DURSUN S, MENSU-RALKOY E, UNVER M U, et al. Enhancement of electrical properties in the ternary PMN-PT-PZ through compositional variation, crystallographic texture, and quenching. Journal of the American Ceramic Society, 2020, 103(4): 2499-2508.
DOI URL |
[13] | LINES M E, GLASS A M. Principles and Applications of Ferroelectrics and Related Materials. Clarendon: Oxford University Press, 1977: 25-28. |
[14] |
CHOI S W, SHROUT R T, JANG S J, et al. Dielectric and pyroelectric properties in the Pb(Mg1/3Nb2/3)O3-PbTiO3 system. Ferroelectrics, 1989, 100(1): 29-38.
DOI URL |
[15] |
WEN K, QIU Q, JI H, et al. Investigation of phase diagram and electrical properties of xPb(Mg1/3Nb2/3)O3-(1-x)Pb(Zr0.4Ti0.6)O3 ceramics. Journal of Materials Science: Materials in Electronics, 2014, 25(7): 3003-3009.
DOI URL |
[16] |
LI F, LIN D, CHEN Z, et al. Ultrahigh piezoelectricity in ferroelectric ceramics by design. Nature Materials, 2018, 17(4): 349-354.
DOI URL |
[17] |
GUO Q, HOU L, LI F, et al. Investigation of dielectric and piezoelectric properties in aliovalent Eu3+-modified Pb(Mg1/3Nb2/3)O3- PbTiO3 ceramics. Journal of the American Ceramics Society, 2019, 102(12): 7428-7435.
DOI URL |
[18] |
WANG L, LIANG R, MAO C, et al. Effect of PMN content on the phase structure and electrical properties of PMN-PZT ceramics. Ceramics International, 2013, 39(7): 8571-8574.
DOI URL |
[19] |
UDOMKAN N, LIMSUWAN, et al. Effect of rare-earth (RE=La, Nd, Ce and Gd) doping on the piezoelectric of PZT (52:48) ceramics. International Journal of Modern Physics B, 2007, 21(26): 4549-4559.
DOI URL |
[20] |
WANG H, JIANG B, SHROUT T R, et al. Electromechanical properties of fine-grain, 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 ceramics. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2004, 51(7): 908-912.
DOI URL |
[21] | CAO W, RANDALL C A. Grain size and domain size relations in bulk ceramic ferroelectric materials. Journal of Physics & Chemistry of Solids, 1996, 57(10): 1499-1505. |
[22] |
LEE H J, ZHANG S, LUO J, et al. Thickness-dependent properties of relaxor-PbTiO3 ferroelectrics for ultrasonic transducers. Advanced Functional Materials, 2010, 20(18): 3154-3162.
DOI URL |
[23] |
ZHANG S, LI F, JIANG X, et al. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers- a review. Progress in Materials Science, 2015, 68: 1-66.
DOI URL |
[24] |
NOHEDA B, COX D E, SHIRANE G, et al. Phase diagram of the ferroelectric relaxor (1-x)PbMg1/3Nb2/3O3-xPbTiO3. Physical Review B, 2002, 66(5): 054104.
DOI URL |
[25] | MISHRA S K, SINGH A P, DHANANJAI P. Thermodynamic nature of phase transitions in Pb(ZrxTi1-x)O3 ceramics near the morphotropic phase boundary: I. structural studies. Philosophical Magazine Part B, 1997, 76(2): 213-226. |
[26] |
LI K, SUN E, ZHANG Y, et al. High piezoelectricity of Eu3+- doped Pb(Mg1/3Nb2/3)O3-0.25PbTiO3 transparent ceramics. Journal of Materials Chemistry C, 2021, 9(7): 2426-2436
DOI URL |
[27] |
LI F, ZHANG S, DAMJANOVIC D, et al. Local structural heterogeneity and electromechanical responses of ferroelectrics: learning from relaxor ferroelectrics. Advanced Functional Materials, 2018, 28(37): 1801504
DOI URL |
[28] |
CHEN J, CHAN H M, HARMER M P. Ordering structure and dielectric properties of undoped and La/Na-doped Pb(Mg1/3Nb2/3)O3. Journal of the American Ceramic Society, 1989, 72(4): 593-598.
DOI URL |
[29] | HILCZER B. Influence of lattice-deffects on the properteis of ferroelectrics. Diffusionless Phase Transitions in Oxides and Some Reconstructive and Martensitic Phase Transitions, 1995, 101: 95-128. |
[30] | SMOLENSKII G A, ISUPOV V A, AGRANOVSKAYA A I, et al. Ferroelectrics with diffuse phase transitions. Soviet Physics-Solid State, 1961, 2(11): 2584-2594. |
[31] | SMOLENSKII G A. Physical phenomena in ferroelectrics with diffused phase transition. Journal of the Physical Society of Japan, 1970, 28(1): 26-37. |
[32] |
LI F, ZHANG S, YANG T, et al. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nature Communications, 2016, 7: 13807.
DOI URL |
[33] |
BOKOV A A. Recent progress in relaxor ferroelectrics with perovskite structure. Journal of Material Science, 2006, 41(1): 31-52.
DOI URL |
[34] | BERLINCOURT D. Piezoelectric Crystals and Ceramics. Boston, MA: Springer, 1971: 63-124. |
[35] |
CROSS L E. Relaxor ferroelectrics. Ferroelectrics, 1987, 76(3/4): 241-276.
DOI URL |
[36] |
VIEHLAND D, JANG S J, CROSS L E, et al. Freezing of the polarization fluctuations in lead magnesium niobate relaxors. Journal of Applied Physics, 1990, 68(6): 2916-2921.
DOI URL |
[1] | 刘鼎伟, 曾江涛, 郑嘹赢, 满振勇, 阮学政, 时雪, 李国荣. BiAlO3掺杂PZT陶瓷的高压电性能和低电场应变滞后[J]. 无机材料学报, 2022, 37(12): 1365-1370. |
[2] | 聂恒昌, 王永龄, 贺红亮, 王根水, 董显林. 多孔PZT95/5铁电陶瓷材料研究进展[J]. 无机材料学报, 2018, 33(2): 153-161. |
[3] | 于 瑶, 王旭升, 李艳霞, 姚 熹. 极化对锆钛酸铅陶瓷力学性能的影响[J]. 无机材料学报, 2015, 30(2): 219-224. |
[4] | 曾 涛, 白 杨, 沈喜训, 王保峰, 董显林, 周志勇. 多孔PZT95/5铁电陶瓷的机械性能和铁电性能研究[J]. 无机材料学报, 2014, 29(7): 758-762. |
[5] | 兰春锋, 聂恒昌, 陈学锋, 王军霞, 王根水, 董显林, 刘雨生, 贺红亮. 致密PZT95/5铁电陶瓷低温相结构与电性能研究[J]. 无机材料学报, 2013, 28(5): 502-506. |
[6] | 朱孔军, 朱仁强, 董娜娜, 顾洪汇, 裘进浩, 季宏丽. PZT陶瓷粉体的水热合成[J]. 无机材料学报, 2012, 27(5): 507-512. |
[7] | 邓启煌, 王连军, 王宏志, 江 莞. 锆钛酸铅陶瓷在力电耦合场下疲劳性能的评价[J]. 无机材料学报, 2012, 27(4): 358-362. |
[8] | 卢剑萍, 李国荣, 郑嘹赢, 曾江涛, 曾华荣, 卞建江. 电泳沉积法制备PNN-PZT厚膜的研究[J]. 无机材料学报, 2012, 27(4): 379-384. |
[9] | 邓启煌, 王连军, 许虹杰, 王宏志, 江 莞. MSP试验法评价PZT陶瓷的循环疲劳寿命[J]. 无机材料学报, 2012, 27(10): 1047-1052. |
[10] | 蔡坤鹏, 孙竞博, 李 勃, 周 济. 三维PZT木堆结构的直写成型[J]. 无机材料学报, 2011, 26(5): 495-498. |
[11] | 周 阳,程春生,赵敬伟,郑红芳,赵庆勋,彭英才,刘保亭. 玻璃基Pt/Pb(Zr 0.4 Ti 0.6 )O3/ITO电容器的结构及物理性能研究[J]. 无机材料学报, 2010, 25(3): 242-246. |
[12] | 曹瑞娟,李国荣,赵苏串,曾江涛,郑嘹赢,殷庆瑞. 电泳沉积PNN-PZT陶瓷厚膜及其电学性能研究[J]. 无机材料学报, 2009, 24(6): 1183-1188. |
[13] | 孙秋,魏兆冬,王福平,姜兆华. Gd掺杂对PZT薄膜介电性能及极化行为的影响[J]. 无机材料学报, 2008, 23(5): 872-876. |
[14] | 陈丰,杨世源,王军霞,贺红亮,汪关才. 柱面冲击波合成对 PZT 95/5粉体性能及烧结特性的影响[J]. 无机材料学报, 2007, 22(5): 827-832. |
[15] | 王忠华,李振豪,普朝光,杨培志,林猷慎. 用于非制冷热释电红外探测器的 PZT铁电薄膜研究[J]. 无机材料学报, 2006, 21(5): 1223-1229. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||