无机材料学报 ›› 2021, Vol. 36 ›› Issue (11): 1178-1184.DOI: 10.15541/jim20200748

• 研究论文 • 上一篇    下一篇

基于机器学习训练金属离子吸附能预测模型的研究

张瑞鸿1(), 魏鑫2, 卢占会1, 艾玥洁3()   

  1. 1.华北电力大学 数理学院, 北京 102206
    2.华北电力大学 控制与计算机工程学院, 北京 102206
    3.华北电力大学 环境科学与工程学院 资源与环境系统优化教育部重点实验室, 北京 102206
  • 收稿日期:2020-12-31 修回日期:2021-04-15 出版日期:2021-11-20 网络出版日期:2021-06-01
  • 通讯作者: 艾玥洁, 副教授. E-mail: aiyuejie@ncepu.edu.cn
  • 作者简介:张瑞鸿(1996-), 女, 硕士研究生. E-mail: zhangruihong@ncepu.edu.cn
  • 基金资助:
    国家自然科学基金(22076044);国家重点研发计划(2017YFA0207002);中央高校基础研究经费(2017YQ001)

Training Model for Predicting Adsorption Energy of Metal Ions Based on Machine Learning

ZHANG Ruihong1(), WEI Xin2, LU Zhanhui1, AI Yuejie3()   

  1. 1. College of Mathematics and Physics, North China Electric Power University, Beijing 102206, China
    2. College of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
    3. MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
  • Received:2020-12-31 Revised:2021-04-15 Published:2021-11-20 Online:2021-06-01
  • Contact: AI Yuejie, associate professor. E-mail: aiyuejie@ncepu.edu.cn
  • About author:ZHANG Ruihong(1996-), femal, Master candidate. E-mail: zhangruihong@ncepu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22076044);National Key Research and Development Program of China(2017YFA0207002);Fundamental Research Funds for the Central Universities(2017YQ001)

摘要:

本研究通过密度泛函理论对氧化石墨烯和金属离子的吸附行为进行理论模拟。基于机器学习方法训练预测模型的过程中, 缺失值采用推荐系统中广泛使用的奇异值分解方法处理, 并用梯度提升机解释了影响吸附能的重要因素。结果发现吸附体系中存在九种特征可为吸附能提供90%的累积重要性, 分别为离子半径、零点振动能量、密立根电荷、沸点、偶极矩、原子量、摩尔定容热容、自旋多重度和键长。定量评估了六种回归方法的预测精度, 包括支持向量回归、岭回归、随机森林、极端随机森林、极端梯度提升和轻梯度提升机。结果表明, 机器学习方法可提供足够的吸附能预测准确性, 其中极端随机森林方法表现出最优的预测性能, 均方误差仅为0.075。该模型用于香兰素吸附金属离子的测试, 验证了基于机器学习训练金属离子吸附能预测模型的可行性, 但仍需进一步提高其泛化能力。本研究基于机器学习预测吸附能, 简化预测过程、节省计算时间, 可为吸附去除金属离子的理论和实验研究提供参考。

关键词: 机器学习, 密度泛函理论, 吸附能, 金属离子, 极端随机森林

Abstract:

The adsorption behavior of graphene oxide and metal ions was simulated theoretically by density functional theory. In the process of training the prediction model based on the machine learning method, the missing values were processed by matrix completion method, which was widely used in the recommendation systems, and gradient boosting machine (GBM) was trained to explain the importance of factors that affect the adsorption energy. The result showed that nine properties of the adsorption, namely ionic radius, zero-point vibration energy, Mulliken charge, boiling point, dipole moment, atomic weight, molar heat capacity at constant volume (CV), spin multiplicity and bond length, were found to provide 90% importance of the cumulative adsorption energy. Then six regression methods, including support vector regression, ridge regression, random forest, extremely randomized trees, extreme gradient boosting, and light gradient boosting machine, were used to quantitatively evaluate the prediction accuracy. The results showed that machine learning could provide sufficient accuracy to predict adsorption energy. Among them, extremely randomized trees displayed the best prediction performance, with a mean square error only 0.075. Furthermore, the trained model was tested in a system of vanillin adsorbing metal ions, verifying the feasibility of training the prediction model of adsorption energy based on machine learning. But it is still necessary to be further improved. In general, this research takes the advantage of machine learning on the basis of saving experimental time to provide an instructive reference for theoretical research on metal ion removal.

Key words: machine learning, density functional theory, adsorption energy, metal ions, extremely randomized trees

中图分类号: