无机材料学报 ›› 2021, Vol. 36 ›› Issue (12): 1237-1246.DOI: 10.15541/jim20210247
• 综述 • 下一篇
收稿日期:
2021-04-13
修回日期:
2021-05-24
出版日期:
2021-12-20
网络出版日期:
2021-06-01
作者简介:
刘 茜(1958-), 女, 研究员. E-mail: qianliu@mail.sic.ac.cn
基金资助:
LIU Qian1,2(), WANG Jiacheng1,2, ZHOU Zhenzhen1, XU Xiaoke1
Received:
2021-04-13
Revised:
2021-05-24
Published:
2021-12-20
Online:
2021-06-01
About author:
LIU Qian(1958-), female, professor. E-mail: qianliu@mail.sic.ac.cn
Supported by:
摘要:
高通量制备可通过并行合成策略快速获得大量成分准连续或梯度变化的样品, 从中筛选出具有最佳成分与性能的目标材料, 将传统的“试错法”研发模式变革为系统寻优的新模式, 可以显著提高研发效率。高通量制备实验还可与材料计算和机器学习等虚拟实验相辅相成, 验证计算结果, 并为数据挖掘和应用提供更丰富的实验基础。本文综述了微纳粉体样品库高通量并行合成方法和进展, 这些典型的高通量制备方法为功能粉体材料研发工作者加速实验进程提供了新思路和高效合成路径, 已应用于催化剂、荧光粉、红外辐射材料、电催化材料等的快速发现和优选, 并将不断扩大应用领域和规模, 凸显其先进性和应用价值。
中图分类号:
刘茜, 王家成, 周真真, 徐小科. 微纳粉体样品库高通量并行合成的研究进展[J]. 无机材料学报, 2021, 36(12): 1237-1246.
LIU Qian, WANG Jiacheng, ZHOU Zhenzhen, XU Xiaoke. Research Progress on High Throughput Parallel Synthesis of Micro-nano Powders Libraries[J]. Journal of Inorganic Materials, 2021, 36(12): 1237-1246.
图1 光催化剂样品库可见光辐照催化活性快速评价装置[9]
Fig. 1 Front view of the experimental setup for visible-light irradiation of the photocatalysts libraries[9] Ⓐ Array of lamps (Osram Dulus S G23, 11W); Ⓑ Bath of frosted glass filled with 1 mol/L K2CrO4 solution; Ⓒ Library of 45 HPLC flasks arranged in five columns and nine rows; Ⓓ Orbital shaker (Heidolph Titramax 100)
图2 (a)组合溶液喷射系统示意图(主要包括微压电喷头, 原液储存容器, x-y移动台, 阵列微反应器等)[12]; (b)溶胶-凝胶合成装置主体示意图(1-箱体, 内置梯度温控; 4-摇动电机; 5-支撑杆; 7-反应腔; 8-微反应器阵列)[16]
Fig. 2 (a) Schematic diagram of drop-on-demand inkjet delivery system (mainly with micro-piezoelectric inkjet head, solution reservoir, x-y moving stage, microreactor and substrate)[12]; (b) schematic diagram of Sol-Gel device (1-box with temperature controlling insides; 4-shaking motor; 5-support rod; 7-reaction chamber; 8-microreactor array)[16]
图3 (a)代表性的三激光束并行加热系统示意图(主要包括激光源、反射镜、阵列样品支撑和移动台、计算机和控制器等)[21], (b)三通道光谱仪示意图(主要包括光纤光谱模块、光谱校准模块、LE和LED光源、阵列样品支撑和移动台等)[22]
Fig. 3 (a) Schematic diagram of a typical triple-laser-beam parallel heating system(mainly including laser sources, reflectors, sample library holder and moving platform, computer and controllers)[21]; (b) Schematic diagram of a representative triple channel optical spectrometer(mainly including fiber optical spectrometer, spectral calibration device, modular LE and LED excitation source, sample library holder and moving platform)[22]
图4 由聚四氟乙烯制成的单层100通道水热合成粉体装置图(可沿纵向堆叠)[23]
Fig. 4 View of the multi-autoclave showing the mode of stacking of the Teflon blocks and one of the alternative designs using Teflon inserts which can be stacked vertically[23]
图5 (a)高通量连续水热流合成纳米晶系统示意图; (b)冰冻干燥并经1000 ℃煅烧处理的系列样品分别填入聚四氟乙烯三角形样品盒用于后续表征示意图[29]
Fig. 5 (a) Schematic layout of the high-throughput hydrothermal (HiTCH) flow synthesis system, and (b) shematic of freeze-dried powders fired at 1000 ℃ and filled into a PTFE triangular holder[29]
图6 (a)陶瓷基片-铜网-金属掩膜三层结构微型反应装置示意图; (b)实物照片; (c)合成粉体转入一个与陶瓷微反应器基板具有相同几何尺寸的塑料基板, 塑料基板凹坑深度2 mm; (d)用金属压头将粉体压实[39]
Fig. 6 Schematic diagram (a) and photograph (b) of the ceramic substrate-copper net-metal mask microreactor array, (c) a plastic substrate with the same predrilled shallow wells (2 mm in depth) as the library, then flipped over the synthesized powders into the shallow wells, and (d) a metal plate used to compact powders[39]
图8 基于微流控芯片的光催化剂筛选系统设计图(a), 具有楔形机构的多通道微流控芯片示意图(b), 催化剂装载示意图(c)和催化剂筛选过程示意(d)[43]
Fig. 8 Setup of the microchip-based photocatalyst screening system (a), schematic diagram of the multi-channel array ship with a wedge structure in each channel (b), schematic diagram of the catalyst loading (c), and illustration of the catalyst screening procedure (d)[43] (d1) Loading catalyst particles in the microchannel to form the column; (d2) Introducing MB solution into the channel and recording the initial channel image; (d3) MB degradation under UV light; (d4) Recording the channel image after definite time
图9 基于微流控芯片的溶液成分及温度控制平台(包括2个入液口和20个出液口(a), 微反应器阵列细节(包括100个孔位和5个温度梯度)以及圣诞树型的微流控芯片结构(b)[48]
Fig. 9 Photos of the microfluidic-based composition and temperature controlling platform with two inlets and 20 outlets (a), details of the micro-reactor arrays (120-230 ℃, 100 holes) and microfluidic chip having Christmas-tree-type structure (b)[48]
图10 (Sr,Ca,Ba,Mg)2Si5N8:Eu2+组合样品库的发光强度和色坐标筛选结果: (a) (Ca,Sr,Mg)2Si5N8:Eu2+体系; (b) (Ca,Sr,Mg)2Si5N8:Eu2+体系; (c) (Ca,Sr,Ba)2Si5N8:Eu2+体系; (d) (Sr,Ba,Mg)2Si5N8:Eu2+体系[49]
Fig. 10 Ternary combi-chem libraries for (a) (Ca,Sr,Mg)2Si5N8: Eu2+, (b) (Ca,Sr,Mg)2Si5N8:Eu2+, (c) (Ca,Sr,Ba)2Si5N8:Eu2+, and (d) (Sr,Ba,Mg)2Si5N8:Eu2+ in terms of photoluminescent intensity and color chromaticity[49] Actual photos taken under 365 nm excitations are also presented
图11 高通量配料装置内部结构(a),固态粉体配料(b)及操作(c)流程示意图[53]
Fig. 11 Internal structure(a), schematic diagram (b) and operation flow chart (c) of the high throughput equipment[53]
图12 高通量电场辅助燃烧合成系统示意图[55]
Fig. 12 Schematic diagram of high-throughput electric field-assisted combustion synthesis system[55] 4×4 array sintered samples
[1] |
HANAK J J. Multiple-sample-concept in materials research - synthesis, compositional analysis and testing of entire multicomponent systems. J. Mater. Sci., 1970, 5(11): 964-971.
DOI URL |
[2] |
XIANG X D, SUN X D, BRICENO G, et al. A combinatorial approach to materials discovery. Science, 1995, 268(5218): 1738-1740.
DOI URL |
[3] |
VAN DOVER R B, SCHNEEMEYER L D, FLEMING R M. Discovery of a useful thin-film dielectric using a composition- spread approach. Nature, 1998, 392(6672): 162-164.
DOI URL |
[4] |
XIANG X D. Combinatorial materials synthesis and screening: an integrated materials chip approach to discovery and optimization of functional materials. Annu. Rev. Mater. Sci., 1999, 29: 149-171.
DOI URL |
[5] |
KOINUMA H, TAKEUCHI I. Combinatorial solid-state chemistry of inorganic materials. Nat. Mater., 2004, 3(7): 429-438.
DOI URL |
[6] | AMIS E J, XIANG X D, ZHAO J C. Combinatorial materials science: what's new since Edison? Mrs. Bull., 2002, 27(4): 295-297. |
[7] |
REDDINGTON E, SAPIENZA A, GURAU B, et al. Combinatorial electrochemistry: a highly parallel, optical screening method for discovery of better electrocatalysts. Science, 1998, 280(5370): 1735-1737.
DOI URL |
[8] |
SCHEIDTMANN J, WEISS P A, MAIER W F. Hunting for better catalysts and materials-combinatorial chemistry and high throughput technology. Appl. Catal. A-Gen., 2001, 222(1/2): 79-89.
DOI URL |
[9] |
LETTMANN C, HINRICHS H, MAIER W F. Combinatorial discovery of new photocatalysts for water purification with visible light. Angew. Chem. Int. Ed., 2001, 40(17): 3160-3164.
DOI URL |
[10] |
WELSCH F G, STOEWE K, MAIER W F. Rapid optical screening technology for direct methanol fuel cell (DMFC) anode and related electrocatalysts. Catal. Today, 2011, 159(1): 108-119.
DOI URL |
[11] |
DOGAN C, STOEWE K, MAIER W F. Optical high-throughput screening for activity and electrochemical stability of oxygen reducing electrode catalysts for fuel cell applications. ACS Comb. Sci., 2015, 17(3): 164-175.
DOI URL |
[12] | 高琛, 鲍俊, 黄孙祥, 等. 用于制备组合材料样品库的难溶物悬浮液喷射装置. 中国, B05C5/00, CN2759615Y. 2004.11.19. |
[13] |
CHAN TING-SHAN, KANG CHIA-CHEN, LIU RU-SHI, et al. Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. J. Comb. Chem., 2007, 9(3): 343-346.
DOI URL |
[14] |
CHEN LEI, FU YIBING, ZHANG GUOBIN, et al. Optimization of Pr3+, Tb3+, and Sm3+ co-doped (Y0.65Gd0.35)BO3:0.05Eu3+ VUV phosphors through combinatorial approach. J. Comb. Chem., 2008, 10(3): 401-404.
DOI URL |
[15] |
DING JIANJUN, BAO JUN, SUN SONO, et al. Combinatorial discovery of visible-light driven photocatalysts based on the ABO3-type (A = Y, La, Nd, Sm, Eu, Gd, Dy, Yb, B = Al and In) binary oxides. J. Comb. Chem., 2009, 11(4): 523-526.
DOI URL |
[16] | 孙松, 魏宇学, 张亚洲, 等. 一种溶胶凝胶并行合成装置. 中国, B01J19/10, CN111420624A. 2020.07.17. |
[17] |
ZHANG KONG, LIU QINGFENG, LIU QIAN, et al. Combinatorial optimization of (YxLu1-x-y)3Al5O12:3yCe green-yellow phosphors. J. Comb. Chem., 2010, 12(4): 453-457.
DOI URL |
[18] |
SU XIAOBIN, ZHANG KONG, LIU QIAN, et al. Combinatorial optimization of (Lu1-xGdx)3Al5O12:3yCe yellow phosphors as precursors for ceramic scintillators. ACS Comb. Sci., 2011, 13(1): 79-83.
DOI URL |
[19] |
TANG FU-HAN, ZHUANG JIAN-DONG, FEI FAN, et al. Combinatorial optimization of Ba/Fe-cordierite solid solution (Ba0.05Fe0.1Mg)2Al4Si5O18 for high infrared radiance materials. Chin. J. Chem. Phys., 2012, 25(3): 345-351.
DOI URL |
[20] |
WEI QINHUA, WAN JIEQIONG, LIU GUANGHUI, et al. Combinatorial optimization of La, Ce-co-doped pyrosilicate phosphors as potential scintillator materials. ACS Comb. Sci., 2015, 17(4): 217-223.
DOI URL |
[21] | 刘茜, 余野建定, 汪超越, 等. 阵列样品激光加热系统. 中国, G01N1/44, CN109352182B. 2021.02.12. |
[22] |
ZHOU ZHENZHEN, LIU QIAN, FU YANWEN, et al. Multi-channel fiber optical spectrometer for high-throughput characterization of photoluminescence properties. Rev. Sci. Instrum., 2020, 91(12): 123113.
DOI URL |
[23] | AKPORIAYE D E, DAHL I M, KARLSSON A, et al. Combinatorial approach to the hydrothermal synthesis of zeolites. Angew. Chem. Int. Ed., 1998, 37(5): 609-611. |
[24] |
KLEIN J, LEHMANN C W, SCHMIDT H W, et al. Combinatorial material libraries on the microgram scale with an example of hydrothermal synthesis. Angew. Chem. Int. Ed., 1998, 37(24): 3369-3372.
DOI URL |
[25] |
SENKAN S M. High-throughput screening of solid-state catalyst libraries. Nature, 1998, 394(6691): 350-353.
DOI URL |
[26] |
NEWSAM J M, BEIN T, KLEIN J, et al. High throughput experimentation for the synthesis of new crystalline microporous solids. Micropor. Mesopor. Mat., 2001, 48(1/2/3): 355-365.
DOI URL |
[27] | 魏宇学, 孙松, 张亚洲 等. 一种水热溶剂热并行合成装置. 中国, B01J19/00, CN111437780A. 2020.07.24. |
[28] |
WEI YUXUE, WANG AZHU, LV LINGLING, et al. Synchrotron infrared spectroscopic high-throughput screening of multi-composite photocatalyst films for air purification. Catal. Sci. Technol., 2021, 11(3): 790-794.
DOI URL |
[29] |
WENG XIAOLE, COCKCROFT JEREMY K, HYETT GEOFFREY, et al. High-throughput continuous hydrothermal synthesis of an entire nanoceramic phase diagram. J. Comb. Chem., 2009, 11(5): 829-834.
DOI URL |
[30] |
QUESADA-CABRERA RAUL, WENG XIAOLE, HYET GEOFF, et al. High-throughput continuous hydrothermal synthesis of nanomaterials (Part II): unveiling the as-prepared CexZryYzO2-δ phase diagram. ACS Comb. Sci., 2013, 15(9): 458-463.
DOI URL |
[31] |
LIN TIAN, KELLICI SUELA, GONG KENAN, et al. Rapid automated materials synthesis instrument: exploring the composition and heat-treatment of nanoprecursors toward low temperature red phosphors. J. Comb. Chem., 2010, 12(3): 383-392.
DOI URL |
[32] |
ALEXANDER SAM J, LIN TIAN, BRETT DAN J L, et al. A combinatorial nanoprecursor route for direct solid state chemistry: discovery and electronic properties of new iron-doped lanthanum nickelates up to La4Ni2FeO10-δ. Solid State Ionics, 2012, 225: 176-181.
DOI URL |
[33] |
GOODALL JOSEPHINE B M, ILLSLEY DEREK, LINES ROBERT, et al. Structure-property-composition relationships in doped zinc oxides: enhanced photocatalytic activity with rare earth dopants. ACS Comb. Sci., 2015, 17(2): 100-112.
DOI URL |
[34] |
JOHNSON IAN D, LUEBKE MECHTHILD, WU ON YING, et al. Pilot-scale continuous synthesis of a vanadium-doped LiFePO4/C nanocomposite high-rate cathodes for lithium-ion batteries. J. Power Sources, 2016, 302: 410-418.
DOI URL |
[35] |
HOWARD DOUGAL P, MARCHAND PETER, MCCAFFERTY LIAM, et al. High-throughput continuous hydrothermal synthesis of transparent conducting aluminum and gallium Co-doped zinc oxides. ACS Comb. Sci., 2017, 19(4): 239-245.
DOI URL |
[36] |
GROVES ALEXANDRA R, ASHTON THOMAS E, DARR JAWWAD A. High throughput synthesis and screening of oxygen reduction catalysts in the MTiO3 (M=Ca, Sr, Ba) perovskite phase diagram. ACS Comb. Sci., 2020, 22(12): 750-756.
DOI URL |
[37] |
SURESH K, PATIL K C. Preparation and properties of fine particle nickel zinc ferrites-a comparative study of combustion and precursor methods. J. Solid State Chem., 1992, 99(1): 12-17.
DOI URL |
[38] |
KINGSLEY J J, PEDERSON L R. Combustion synthesis of perovskite LnCrO3 powders using ammonium dichromate. Mater. Lett., 1993, 18(1/2): 89-96.
DOI URL |
[39] |
LUO Z L, GENG B, BAO J, et al. Parallel solution combustion synthesis for combinatorial materials studies. J. Comb. Chem., 2005, 7(6): 942-946.
DOI URL |
[40] |
LU H, SCHMIDT M A, JENSEN K F. Photochemical reactions and on-line UV detection in microfabricated reactors. Lab Chip, 2001, 1(1): 22-28.
DOI URL |
[41] |
LIU DONGFEI, CITO SALVATORE, ZHANG YUEZHOU, et al. A versatile and robust microfluidic platform toward high throughput synthesis of homogeneous nanoparticles with tunable properties. Adv. Mater., 2015, 27(14): 2298-2304.
DOI URL |
[42] | 叶嘉明. 一种微流控组合化学反应芯片. 中国, B01L3/00, CN103386338A. 2013.11.13. |
[43] |
ZHANG HAO, WANG JING-JING, FAN JIE, et al. Microfluidic chip-based analytical system for rapid screening of photocatalysts. Talanta, 2013, 116: 946-950.
DOI URL |
[44] | 钟澄, 宋志双, 胡文彬. 合成金属基粉体材料的装置及其高通量合成方法. 中国, B22F9/24, CN105935780B. 2018.05.04. |
[45] | 钟澄, 刘晓瑞, 刘杰, 等. 一种系统集成高通量制备和高通量电化学测试的方法. 中国, G01N27/26, CN111896595A. 2020.11.06. |
[46] | 钟澄, 刘杰, 邓意达, 等. 梯度加热的微流控合成材料装置. 中国, B01L3/00, CN109622087B. 2021.04.02. |
[47] | 钟澄, 刘杰, 胡文彬. 微流控高通量合成和电化学表征一体化装置. 中国, G01N27/48, CN109839418B. 2020.07.14. |
[48] |
HU YANG, LIU BIN, WU YATING, et al. Facile high throughput wet-chemical synthesis approach using a microfluidic-based composition and temperature controlling platform. Front. Chem., 2020, 8: 579828.
DOI URL |
[49] |
LEE BONGHYUN, LEE SANGJUN, JEONG HYUNG GON, et al. Solid-state combinatorial screening of (Sr,Ca,Ba,Mg)2Si5N8:Eu2+ phosphors. ACS Comb. Sci., 2011, 13(2): 154-158.
DOI URL |
[50] |
HE GANG, LIU GUANGHUA, YANG ZENGCHAO, et al. Preparation of YAG glass-ceramic by combustion synthesis under high gravity. Ceram. Int., 2014, 40(9): 15265-15271.
DOI URL |
[51] |
YANG ZENGCHAO, LIU GUANGHUA, LI JIANGTAO, et al. Preparation of transparent Y2O3-Al2O3-SiO2 glasses by high-gravity combustion synthesis with heating assistance. J. Am. Ceram. Soc., 2012, 95(6): 1799-1802.
DOI URL |
[52] |
LIU GUANGHUA, LI JIANGTAO, HE BIN. Melt-casting of Si-Al-Y-O glasses and glass-ceramics by combustion synthesis under high gravity. J. Non-cryst. Solids., 2011, 357(7): 1764-1767.
DOI URL |
[53] |
SHUANG SHUANG, LI HONGHUA, HE GANG, et al. High-throughput automatic batching equipment for solid state ceramic powders. Rev. Sci. Instrum., 2019, 90(8): 083904.
DOI URL |
[54] | 双爽, 李宏华, 贺刚 等. 一种高通量粉体的制备装置及其使用方法. 中国, B28B3/04, CN110434982A. 2019.11.12. |
[55] |
LI HONGHUA, HE GANG, LI YONG, et al. Combinatorial synthesis of multiple ZrxTi1-xC by electric field-assisted combustion synthesis. J. Eur. Ceram. Soc., 2021, 41(1): 1020-1024.
DOI URL |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||