无机材料学报 ›› 2021, Vol. 36 ›› Issue (12): 1247-1255.DOI: 10.15541/jim20210126
所属专题: MXene材料专辑(2020~2021); 【信息功能】Max层状材料、MXene及其他二维材料
张霄1,2,3(), 李友兵2,3, 陈科2,3, 丁浩明2,3, 陈露2,3, 李勉2,3, 史蓉蓉1(), 柴之芳2,3, 黄庆2,3()
收稿日期:
2021-03-03
修回日期:
2021-03-24
出版日期:
2021-12-20
网络出版日期:
2021-06-01
通讯作者:
史蓉蓉, 副教授. E-mail: shirr@lzu.edu.cn;黄 庆, 研究员. E-mail: huangqing@nimte.ac.cn
作者简介:
张 霄(1996-), 男, 硕士研究生. E-mail: zhangxiao18@lzu.edu.cn
基金资助:
ZHANG Xiao1,2,3(), LI Youbing2,3, CHEN Ke2,3, DING Haoming2,3, CHEN Lu2,3, LI Mian2,3, SHI Rongrong1(), CHAI Zhifang2,3, HUANG Qing2,3()
Received:
2021-03-03
Revised:
2021-03-24
Published:
2021-12-20
Online:
2021-06-01
Contact:
SHI Rongrong, associate professor. E-mail: shirr@lzu.edu.cn;HUANG Qing, professor. E-mail: huangqing@nimte.ac.cn
About author:
ZHANG Xiao(1996-), male, Master candidate. E-mail: zhangxiao18@lzu.edu.cn
Supported by:
摘要:
三元层状化合物MAX相兼具金属与陶瓷优良的力学性质, 通常被认为是一类高安全结构材料。有研究显示, 通过熔盐法可以将副族元素插入到MAX相A位层间, 获得具有铁磁性能的V2(Sn, A)C (A =Fe、Co、Ni和Mn)材料。因而, 如何构建新的MAX相结构并对实现其磁性调控备受关注。本研究通过MAX相M位和A位双固溶的方式设计了四种新型MAX相(V, Nb)2(Sn, A)C (A =Fe、Co、Ni和Mn)。XRD、SEM、EDS结合TEM分析证实了上述新相的合成。超导量子磁强计(Superconducting quantum interference device magnetometer, SQUID)测试磁学性能发现, M位固溶后的MAX相的居里温度与其四方率(c/a)、元素组成有关。(V, Nb)2(Sn, Fe)C、(V, Nb)2(Sn, Ni)C、(V, Nb)2(Sn, Mn)C相较于M位固溶Nb元素之前的V2(Sn, A)C相, 其矫顽力Hc和剩余磁化强度Mr减小, 饱和磁化强度Ms增大。而V2(Sn, Co)C在M位固溶Nb元素之后磁性变化均与前述MAX相相反。通过以上结果, 揭示了M/A位双固溶对MAX相磁性的影响规律, 为调控MAX相磁性提供了新的思路。
中图分类号:
张霄, 李友兵, 陈科, 丁浩明, 陈露, 李勉, 史蓉蓉, 柴之芳, 黄庆. M位与A位双固溶MAX相的磁学性能研究[J]. 无机材料学报, 2021, 36(12): 1247-1255.
ZHANG Xiao, LI Youbing, CHEN Ke, DING Haoming, CHEN Lu, LI Mian, SHI Rongrong, CHAI Zhifang, HUANG Qing. Tailoring MAX Phase Magnetic Property Based on M-site and A-site Double Solid Solution[J]. Journal of Inorganic Materials, 2021, 36(12): 1247-1255.
图1 酸处理后的(V, Nb)2(Sn, Fe)C表征结果
Fig. 1 Characterization results of (V, Nb)2(Sn, Fe)C after acid treatment (a) XRD pattern; (b) SEM image; (c) Corresponding energy-dispersive spectroscopy analysis; (d) Elemental mapping scanning on one particle; (e) Selected area electron diffraction pattern, showing the electron beam being paralleled to the [1$\bar{1}$00] direction; (f) HR-TEM image
图2 (a) (V, Nb)2(Sn, Co)C、(c) (V, Nb)2(Sn, Ni)C和(e) (V, Nb)2(Sn, Mn)C酸处理后的XRD谱图;(b) (V, Nb)2(Sn, Co)C、(d) (V, Nb)2(Sn, Ni)C、(f) (V, Nb)2(Sn, Mn)C元素分布图
Fig. 2 XRD patterns of (a) (V, Nb)2(Sn, Co)C, (c) (V, Nb)2(Sn, Ni)C, and (e) (V, Nb)2(Sn, Mn)C after acid treatment; SEM-EDS elemental mappings of (b) (V, Nb)2(Sn, Co)C, (d) (V, Nb)2(Sn, Ni)C, and (f) (V, Nb)2(Sn, Mn)C after acid treatment
MAX phase | Lattice parameter | Element percentage/% | Nb element in M site/% | Magnetic element in A site/% | |||||
---|---|---|---|---|---|---|---|---|---|
a/nm | c/nm | c/a | V | Nb | Sn | A | |||
V2(Sn, Fe)C[ | 0.2984 | 1.3345 | 4.4718 | 66.84 | - | 22.05 | 11.11 | - | 33.50 |
(V, Nb)2(Sn, Fe)C | 0.3014 | 1.3447 | 4.4622 | 54.32 | 13.38 | 25.03 | 7.27 | 19.76 | 22.51 |
V2(Sn, Co)C[ | 0.2989 | 1.3409 | 4.4864 | 66.36 | - | 22.44 | 11.19 | - | 33.28 |
(V, Nb)2(Sn, Co)C | 0.3016 | 1.3419 | 4.4493 | 56.41 | 11.23 | 24.60 | 7.76 | 16.60 | 23.98 |
V2(Sn, Ni)C[ | 0.2985 | 1.3357 | 4.4751 | 67.47 | - | 24.36 | 8.16 | - | 25.10 |
(V, Nb)2(Sn, Ni)C | 0.3021 | 1.3413 | 4.4402 | 56.87 | 13.00 | 21.66 | 8.47 | 18.61 | 28.10 |
V2(Sn, Mn)C[ | 0.2982 | 1.3403 | 4.4941 | 66.19 | - | 23.07 | 10.74 | - | 31.76 |
(V, Nb)2(Sn, Mn)C | 0.3026 | 1.3509 | 4.4646 | 57.10 | 10.84 | 23.50 | 8.56 | 15.96 | 26.70 |
表1 晶格参数和MAX相中元素的原子百分比
Table 1 Lattice parameters and atomic percentage of element in MAX phases
MAX phase | Lattice parameter | Element percentage/% | Nb element in M site/% | Magnetic element in A site/% | |||||
---|---|---|---|---|---|---|---|---|---|
a/nm | c/nm | c/a | V | Nb | Sn | A | |||
V2(Sn, Fe)C[ | 0.2984 | 1.3345 | 4.4718 | 66.84 | - | 22.05 | 11.11 | - | 33.50 |
(V, Nb)2(Sn, Fe)C | 0.3014 | 1.3447 | 4.4622 | 54.32 | 13.38 | 25.03 | 7.27 | 19.76 | 22.51 |
V2(Sn, Co)C[ | 0.2989 | 1.3409 | 4.4864 | 66.36 | - | 22.44 | 11.19 | - | 33.28 |
(V, Nb)2(Sn, Co)C | 0.3016 | 1.3419 | 4.4493 | 56.41 | 11.23 | 24.60 | 7.76 | 16.60 | 23.98 |
V2(Sn, Ni)C[ | 0.2985 | 1.3357 | 4.4751 | 67.47 | - | 24.36 | 8.16 | - | 25.10 |
(V, Nb)2(Sn, Ni)C | 0.3021 | 1.3413 | 4.4402 | 56.87 | 13.00 | 21.66 | 8.47 | 18.61 | 28.10 |
V2(Sn, Mn)C[ | 0.2982 | 1.3403 | 4.4941 | 66.19 | - | 23.07 | 10.74 | - | 31.76 |
(V, Nb)2(Sn, Mn)C | 0.3026 | 1.3509 | 4.4646 | 57.10 | 10.84 | 23.50 | 8.56 | 15.96 | 26.70 |
图3 在0.1 T下, V2(Sn, A)C和(V, Nb)2(Sn, A)C (A = Fe, Co, Ni和Mn)在2~100 K范围内随温度变化的磁化M-T曲线
Fig. 3 Temperature dependent magnetization M-T curves for (a) V2(Sn, A)C and (b) V2(Sn, A)C (A = Fe, Co, Ni and Mn) at 0.1 T in the range of 2-100 K
图4 V2(Sn, A)C和(V, Nb)2(Sn, A)C(A=Fe、Co、Ni和Mn)在-1~1 T范围内的磁滞回线
Fig. 4 Magnetic hysteresis loops of V2(Sn, A)C and V2(Sn, A)C (A=Fe, Co, Ni and Mn) at different temperatures in the range from -1 to 1 T, respectively Colourful figures are available on website
MAX phase | TC | 2 K | 20 K | 40 K | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Hc | Mr | Ms | Hc | Mr | Ms | Hc | Mr | Ms | ||
V2(Sn, Fe)C | 63 | 458 | 0.59 | 1.73 | 305 | 0.42 | 1.53 | 152 | 0.18 | 1.08 |
(V, Nb)2(Sn, Fe)C | 63 | 238 | 0.48 | 1.79 | 174 | 0.37 | 1.67 | 73 | 0.14 | 1.24 |
V2(Sn, Co)C | 66 | 314 | 0.34 | 1.19 | 224 | 0.26 | 1.05 | 113 | 0.12 | 0.79 |
(V, Nb)2(Sn, Co)C | 53 | 378 | 0.49 | 1.11 | 240 | 0.33 | 1.00 | 134 | 0.17 | 0.71 |
V2(Sn, Ni)C | 60 | 276 | 0.30 | 1.54 | 191 | 0.23 | 1.42 | 94 | 0.10 | 1.12 |
(V, Nb)2(Sn, Ni)C | 53 | 140 | 0.29 | 2.07 | 96 | 0.19 | 1.83 | 45 | 0.07 | 1.34 |
V2(Sn, Mn)C | 56 | 780 | 0.26 | 0.98 | 545 | 0.21 | 0.84 | 206 | 0.07 | 0.63 |
(V, Nb)2(Sn, Mn)C | 57 | 117 | 0.06 | 0.97 | 75 | 0.04 | 0.90 | 32 | 0.01 | 0.67 |
表2 V2(Sn, A)C与(V, Nb)2(Sn, A)C(A = Fe、Co、Ni和Mn)的磁性参数
Table 2 Magnetic parameters of V2(Sn, A)C and (V, Nb)2(Sn, A)C (A = Fe, Co, Ni and Mn)
MAX phase | TC | 2 K | 20 K | 40 K | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Hc | Mr | Ms | Hc | Mr | Ms | Hc | Mr | Ms | ||
V2(Sn, Fe)C | 63 | 458 | 0.59 | 1.73 | 305 | 0.42 | 1.53 | 152 | 0.18 | 1.08 |
(V, Nb)2(Sn, Fe)C | 63 | 238 | 0.48 | 1.79 | 174 | 0.37 | 1.67 | 73 | 0.14 | 1.24 |
V2(Sn, Co)C | 66 | 314 | 0.34 | 1.19 | 224 | 0.26 | 1.05 | 113 | 0.12 | 0.79 |
(V, Nb)2(Sn, Co)C | 53 | 378 | 0.49 | 1.11 | 240 | 0.33 | 1.00 | 134 | 0.17 | 0.71 |
V2(Sn, Ni)C | 60 | 276 | 0.30 | 1.54 | 191 | 0.23 | 1.42 | 94 | 0.10 | 1.12 |
(V, Nb)2(Sn, Ni)C | 53 | 140 | 0.29 | 2.07 | 96 | 0.19 | 1.83 | 45 | 0.07 | 1.34 |
V2(Sn, Mn)C | 56 | 780 | 0.26 | 0.98 | 545 | 0.21 | 0.84 | 206 | 0.07 | 0.63 |
(V, Nb)2(Sn, Mn)C | 57 | 117 | 0.06 | 0.97 | 75 | 0.04 | 0.90 | 32 | 0.01 | 0.67 |
[1] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Kohlenstoffhaltige ternäre Verbindungen (H-Phase). Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1963, 94(4): 672-676.
DOI URL |
[2] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen Ti2TlC, Ti2PbC, Nb2InC, Nb2SnC und Ta2GaC. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964, 95(2): 431-435.
DOI URL |
[3] |
BARSOUM M W. The MN+1AXN phases: a new class of solids; Thermodynamically stable nanolaminates. Progress in Solid State Chemistry, 2000, 28(1-4): 201-281.
DOI URL |
[4] |
BARSOUM M W, RADOVIC M. Elastic and mechanical properties of the MAX phases. Annual Review of Materials Research, 2011, 41(1): 195-227.
DOI URL |
[5] |
SUN Z M. Progress in research and development on MAX phases: a family of layered ternary compounds. International Materials Reviews, 2013, 56(3): 143-166.
DOI URL |
[6] | RADOVIC M, BARSOUM M W. MAX phases: bridging the gap between metals and ceramics. American Ceramics Society Bulletin, 2013, 92(3): 20-27. |
[7] |
SHI S, ZHANG L, LI J. Ti3SiC2 material: an application for electromagnetic interference shielding. Applied Physics Letters, 2008, 93(17): 172903.
DOI URL |
[8] |
NG W H K, GNANAKUMAR E S, BATYREV E, et al. The Ti3AlC2 MAX phase as an efficient catalyst for oxidative dehydrogenation of n-butane. Angewandte Chemie International Edition, 2018, 57(6): 1485-1490.
DOI URL |
[9] |
ZHAO S, DALL’AGNESE Y, CHU, et al. Electrochemical interaction of Sn-containing MAX phase (Nb2SnC) with Li-ions. ACS Energy Letters, 2019, 4(10): 2452-2457.
DOI URL |
[10] |
INGASON A S, MOCKUTE A, DAHLQVIST M, et al. Magnetic self-organized atomic laminate from first principles and thin film synthesis. Physical Review Letters, 2013, 110(19): 195502.
DOI URL |
[11] |
INGASON A S, PETRUHINS A, DAHLQVIST M, et al. A nanolaminated magnetic phase: Mn2GaC. Materials Research Letters, 2013, 2(2): 89-93.
DOI URL |
[12] |
LIN S, TONG P, WANG B S, et al. Magnetic and electrical/ thermal transport properties of Mn-doped Mn+1AXn phase compounds Cr2-xMnxGaC (0≤x≤1). Journal of Applied Physics, 2013, 113(5): 053502.
DOI URL |
[13] |
THORE A, DAHLQVIST M, ALLING B, et al. Magnetic exchange interactions and critical temperature of the nanolaminate Mn2GaC from first-principles supercell methods. Physical Review B, 2016, 93(5): 054432.
DOI URL |
[14] |
INGASON A S, DAHLQVIST M, ROSÉN J. Magnetic MAX phases from theory and experiments; a review. Journal of Physics: Condensed Matter, 2016, 28(43): 433003.
DOI URL |
[15] |
BEI G, PEDIMONTE B J, FEY T, et al. Oxidation behavior of MAX phase Ti2Al1-xSnxC solid solution. Journal of the American Ceramic Society, 2013, 96(5): 1359-1362.
DOI URL |
[16] |
NECHICHE M, GAUTHIER-BRUNET V, MAUCHAMP V, et al. Synthesis and characterization of a new (Ti1-ε, Cuε)3(Al, Cu)C2 MAX phase solid solution. Journal of the European Ceramic Society, 2017, 37(2): 459-466.
DOI URL |
[17] |
ZAPATA-SOLVAS E, HADI M A, HORLAIT D, et al. Synthesis and physical properties of (Zr1-x, Tix)3AlC2 MAX phases. Journal of the American Ceramic Society, 2017, 100(8): 3393-3401.
DOI URL |
[18] |
QU L, BEI G, STELZER B, et al. Synthesis, crystal structure, microstructure and mechanical properties of (Ti1-xZrx)3SiC2 MAX phase solid solutions. Ceramics International, 2019, 45(1): 1400-1408.
DOI URL |
[19] |
MENG F L, ZHOU Y C, WANG J Y. Strengthening of Ti2AlC by substituting Ti with V. Scripta Materialia, 2005, 53(12): 1369-1372.
DOI URL |
[20] |
LI Y, LI M, LU J, et al. Single-atom-thick active layers realized in nanolaminated Ti3(AlxCu1-x)C2 and its artificial enzyme behavior. ACS Nano, 2019, 13(8): 9198-9205.
DOI URL |
[21] |
HAMM C M, BOCARSLY J D, SEWARD G, et al. Non-conventional synthesis and magnetic properties of MAX phases (Cr/Mn)2AlC and (Cr/Fe)2AlC. Journal of Materials Chemistry C, 2017, 5(23): 5700-5708.
DOI URL |
[22] |
FATHEEMA J, FATIMA M, MONIR N B, et al. A comprehensive computational and experimental analysis of stable ferromagnetism in layered 2D Nb-doped Ti3C2 MXene. Physica E: Low-dimensional Systems and Nanostructures, 2020, 124: 114253.
DOI URL |
[23] |
LI Y, LU J, LI M, et al. Multielemental single-atom-thick A layers in nanolaminated V2(Sn, A) C (A = Fe, Co, Ni, Mn) for tailoring magnetic properties. Proceedings of the National Academy of Sciences, 2020, 117(2): 820-825.
DOI URL |
[24] |
XU Q, ZHOU Y, ZHANG H, et al. Theoretical prediction, synthesis, and crystal structure determination of new MAX phase compound V2SnC. Journal of Advanced Ceramics, 2020, 9(4): 481-492.
DOI URL |
[25] |
BARSOUM M W, YAROSCHUK G, TYAGI S. Fabrication and characterization of M2SnC (M=Ti, Zr, Hf and Nb). Scripta Materialia, 1997, 37(10): 1583-1591.
DOI URL |
[26] |
TIAN W B, WANG P L, KAN Y M, et al. Cr2AlC powders prepared by molten salt method. Journal of Alloys and Compounds, 2008, 461(1/2): L5-L10.
DOI URL |
[27] |
GUO X, WANG J, YANG S, et al. Preparation of Ti3SiC2 powders by the molten. salt method. Materials Letters, 2013, 111: 211-213.
DOI URL |
[28] |
WANG B, ZHOU A, HU Q, et al. Synthesis and oxidation resistance of V2AlC powders by molten salt method. International Journal of Applied Ceramic Technology, 2017, 14(5): 873-879.
DOI URL |
[29] |
MANOUN B, SAXENA S K, HUG G, et al. Synthesis and compressibility of Ti3(Al,Sn0.2)C2 and Ti3Al(C0.5,N0.5)2. Journal of Applied Physics, 2007, 101(11): 113523.
DOI URL |
[30] |
SALIKHOV R, MESHKIAN R, WELLER D, et al. Magnetic properties of nanolaminated (Mo0.5Mn0.5)2GaC MAX phase. Journal of Applied Physics, 2017, 121(16): 163904.
DOI URL |
[31] |
BEGG B D, VANCE E R, NOWOTNY J. Effect of particle size on the room-temperature crystal structure of barium titanate. Journal of the American Ceramic Society, 1994, 77(12): 3186-3192.
DOI URL |
[32] |
GRIFFITHS R B. Nonanalytic behavior above the critical point in a random ising ferromagnet. Physical Review Letters, 1969, 23(1): 17-19.
DOI URL |
[33] |
SHOEMAKER D P, RODRIGUEZ E E, SESHADRI R, et al. Intrinsic exchange bias in ZnxMn3-xO4 (x≤1) solid solutions. Physical Review B, 2009, 80(14): 144422.
DOI URL |
[34] |
MEHDAOUI B, PENA O, BAHOUT M, et al. Magnetic properties of the spinel system MgxMn3-xO4(0≤x≤2). Boletín de la Sociedad Española de Cerámica y Vidrio, 2008, 47: 143-147.
DOI URL |
[35] |
UCHINO K, SADANAGA E, HIROSE T, et al. Dependence of the crystal structure on particle size in barium titanate. Journal of the American Ceramic Society, 1989, 72(8): 1555-1558.
DOI URL |
[36] |
ALI M A, HOSSAIN M M, HOSSAIN M A, et al. Recently synthesized (Zr1-xTix)2AlC (0 ≤x≤ 1) solid solutions: theoretical study of the effects of M mixing on physical properties. Journal of Alloys and Compounds, 2018, 743: 146-154.
DOI URL |
[37] |
KRONIK L, JAIN M, CHELIKOWSKY J R. Electronic structure and spin polarization of MnxGa1-xN. Physical Review B, 2002, 66(4): 041203.
DOI URL |
[38] |
KUMAR S, OJHA A K. Room temperature ferromagnetism in undoped and Mn doped t-ZrO2 nanostructures originated due to oxygen vacancy and effect of Mn doping on its optical properties. Materials Chemistry and Physics, 2016, 169: 13-20.
DOI URL |
[39] |
KUMAR S, LAYEK S, YASHPAL M, et al. Room temperature ferromagnetism in undoped and Mn doped CdO nanostructures. Journal of Magnetism and Magnetic Materials, 2015, 393: 555-561.
DOI URL |
[40] |
MERINO I L C, FIGUEIREDO L C, PASSAMANI E C, et al. Study of the influence of Nb buffer layer on the exchange coupling induced at the Co/IrMn interface. Journal of Magnetism and Magnetic Materials, 2017, 432: 494-500.
DOI URL |
[41] |
DOSPIAL M, PLUSA D, ŚLUSAREK B. Study of the magnetic interaction in nanocrystalline Pr-Fe-Co-Nb-B permanent magnets. Journal of Magnetism and Magnetic Materials, 2012, 324(5): 843-848.
DOI URL |
[42] |
STAMOPOULOS D, ARISTOMENOPOULOU E, LAGOGIANNIS A. Co/Nb/Co trilayers as efficient cryogenic spin valves and supercurrent switches: the relevance to the standard giant and tunnel magnetoresistance effects. Superconductor Science and Technology, 2014, 27(9): 095008.
DOI URL |
[1] | 王磊, 李建军, 宁军, 胡天玉, 王洪阳, 张占群, 武琳馨. CoFe2O4@Zeolite催化剂活化过一硫酸盐对甲基橙的强化降解: 性能与机理[J]. 无机材料学报, 2023, 38(4): 469-476. |
[2] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[3] | 胡靖三, 顾建飞, 章维益. 晶场劈裂序参量导致稀土-硼十二化合物中磁性和比热反常的理论研究[J]. 无机材料学报, 2021, 36(8): 865-870. |
[4] | 李友兵, 秦彦卿, 陈科, 陈露, 张霄, 丁浩明, 李勉, 张一鸣, 都时禹, 柴之芳, 黄庆. 熔盐法合成纳米层状Sc2SnC MAX相[J]. 无机材料学报, 2021, 36(7): 773-778. |
[5] | 朱正旺,冯锐,柳扬,张扬,谢文翰,董丽杰. 类鱼骨结构CoFe2O4纳米纤维的制备与性能[J]. 无机材料学报, 2020, 35(9): 1011-1016. |
[6] | 李淑芳,赵爽,周潇,李满荣. Zn3-xMnxTeO6的晶体结构与吸收光谱和磁性研究[J]. 无机材料学报, 2020, 35(8): 895-901. |
[7] | 赵占奎, 李涛, 鲁书含, 王明罡, 张京京, 程道文, 吴臣, 迟悦, 王虹力. SPS界面反应增强机制调控的软磁复合材料磁性能和电阻率[J]. 无机材料学报, 2020, 35(11): 1223-1226. |
[8] | 陈雷雷, 邓子旋, 李勉, 李朋, 常可可, 黄峰, 都时禹, 黄庆. 新型MAX相的相图热力学研究[J]. 无机材料学报, 2020, 35(1): 35-40. |
[9] | 金森, 王作通, 杜亚琼, 胡前库, 禹建功, 周爱国. 双A层MAX相Mo2Ga2C的热压烧结研究[J]. 无机材料学报, 2020, 35(1): 41-45. |
[10] | 党潇琳, 范晓孟, 殷小玮, 马昱昭, 马晓康. 多功能一体化MAX相改性连续纤维增韧陶瓷基复合材料的研究进展[J]. 无机材料学报, 2020, 35(1): 29-34. |
[11] | 李勉, 黄庆. 三元层状碳氮化合物(MAX相)及其衍生二维纳米材料(MXene)研究趋势与展望[J]. 无机材料学报, 2020, 35(1): 1-7. |
[12] | 李勉, 李友兵, 罗侃, LU Jun, EKLUND Per, PERSSON Per, ROSEN Johanna, HULTMAN Lars, 都时禹, 黄政仁, 黄庆. 基于A位元素置换策略合成新型MAX相材料Ti3ZnC2[J]. 无机材料学报, 2019, 34(1): 60-64. |
[13] | 陈卫宾, 刘学超, 卓世异, 柴骏, 施尔畏. 质子辐照对Yb掺杂ZnO稀磁半导体薄膜缺陷与磁性的影响[J]. 无机材料学报, 2018, 33(8): 903-908. |
[14] | 周鑫, 马垒, 刘涛, 郭永斌, 王岛, 董培林. Si3N4/FePd/Si3N4薄膜的晶体结构和磁性能研究[J]. 无机材料学报, 2018, 33(8): 909-913. |
[15] | 李永生, 陈玲. 可控制备磁性四氧化三铁-金纳米复合颗粒及其催化性能研究[J]. 无机材料学报, 2018, 33(2): 221-228. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||