[1] |
AKIRA FUJISHIMA, KENICHI HONDA. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37-38.
DOI
URL
|
[2] |
LI YONG, XUE JINBO, SHEN QIANQIAN, et al. Construction of a ternary spatial junction in yolk-shell nanoreactor for efficient photo-thermal catalytic hydrogen generation. Chemical Engineering Journal, 2021, 423: 130188.
DOI
URL
|
[3] |
GAO JIAQI, XUE JINBO, JIA SHUFANG, et al. Self-doping surface oxygen vacancy-induced lattice strains for enhancing visible light-driven photocatalytic H-2 evolution over black TiO2. ACS Applied Materials & Interface, 2021, 13: 18758-18771.
|
[4] |
SHEN QIANQIAN, XUE JINBO, LI YONG, et al. Construction of CdSe polymorphic junctions with coherent interface for enhanced photoelectrocatalytic hydrogen generation. Applied Catalysis B: Environmental, 2021, 282: 119552.
DOI
URL
|
[5] |
KEVIN SIVULA, FLORIAN LE FORMAL, MICHAEL GRATZEL. Solar water splitting: progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem, 2011, 4: 432-449.
DOI
URL
|
[6] |
ZHANG ZHUJUN, HIROKI NAGASHIMA, TAKASHI TACHIKAWA. Ultra-narrow depletion layers in a hematite mesocrystal-based photoanode for boosting multihole water oxidation. Angewandte Chemie International Edition, 2020, 59: 2-10.
DOI
URL
|
[7] |
LI CHENGCHENG, LUO ZHIBIN, WANG TUO, et al. Surface, bulk, and interface: rational design of hematite architecture toward efficient photo-electrochemical water splitting. Advanced Materials, 2018, 30: 1707502.
DOI
URL
|
[8] |
HAO XIAOYAN, JIA LIXIA, HE CHENGYU, et al. A general strategy for the preparation of semiconductor-oxide-nanowire photoanodes. Journal of Power Sources, 2019, 438: 226952.
DOI
URL
|
[9] |
ZHANG XUEQING, KLAVER PETER, SANTEN VAN RUTGER, et al. Oxygen evolution at hematite surfaces: the impact of structure and oxygen vacancies on lowering the overpotential. Journal of Physical Chemistry C, 2016, 120: 18201-18208.
DOI
URL
|
[10] |
WANG LEI, ZHU JIE, LIU XIANHU. Oxygen-vacancy- dominated cocatalyst/hematite interface for boosting solar water splitting. ACS Applied Materials & Interfaces, 2019, 11: 22272-22277.
|
[11] |
WANG LIANZHOU, WANG ZHILIANG, MAO XIN, et al. Understanding the roles of oxygen vacancies in hematite based photoelectrochemical process. Angewandte Chemie International Edition, 2019, 58: 1030-1034.
DOI
URL
|
[12] |
JIN MINGSHANG, ZHANG HUI, XIE ZHAOXIONG, et al. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angewandte Chemie International Edition, 2011, 50(34): 7850-7854.
DOI
URL
|
[13] |
ZHOU ZHONGYUAN, WU SHAOLONG, QIN LINLING, et al. Modulating oxygen vacancies in Sn-doped hematite film grown on silicon microwires for photoelectrochemical water oxidation. Journal of Materials Chemistry A, 2018, 6: 15593-15602.
DOI
URL
|
[14] |
ZHANG KAN, RAVISHANKAR SANDHEEP, MA MING, et al. Overcoming charge collection limitation at solid/liquid interface by a controllable crystal deficient overlayer. Advanced Energy Materials, 2017, 7: 1600923.
DOI
URL
|
[15] |
WANG LEI, ZHOU XUEMEI, NGUYEN TRUONG NHAT, et al. Plasmon-enhanced photoelectrochemical water splitting using Au nanoparticles decorated on hematite nanoflake arrays. ChemSusChem, 2015, 8(4): 618-622.
DOI
URL
|
[16] |
YI YUNAN, WU QIANBAO, WANG WEI, et al. In situ depositing an ultrathin CoOxHy layer on hematite in alkaline media for photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 2020, 263: 118334.
DOI
URL
|
[17] |
CHEN DONG, LIU ZHIFENG, ZHANG SHAOCE. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Applied Catalysis B: Environmental, 2020, 265: 118580.
DOI
URL
|
[18] |
SHANMUGAM MANIVANNAN, SEONGHWI AN, JUWON JEONG, et al. Hematite/M (M=Au, Pd) catalysts derived from a double-hollow Prussian blue microstructure: simultaneous catalytic reduction of o- and p-nitrophenols. ACS Applied Materials & Interfaces, 2020, 12: 17557-17570.
|
[19] |
XU BIAO, YANG HAO, ZHOU GANG, et al. Strong metal- support interaction in size-controlled monodisperse palladium- hematite nano-heterostructures during a liquid-solid heterogeneous catalysis. Science China Materials, 2014, 57: 34-41.
DOI
URL
|
[20] |
WANG LUYANG, LU YUAN, HAN NANNAN, et al. Suppressing water dissociation via control of intrinsic oxygen defects for awakening solar H2O-to-H2O2 generation. Small, 2021, 17: 2100400.
DOI
URL
|