[1] |
WU J, WU Z X, DING H J, et al. Flexible, 3D SnS2/reduced graphene oxide heterostructured NO2 sensor. Sensors & Actuators: B Chemical, 2020, 305: 127445.
|
[2] |
YIN M L, WANG Y T, YU L M, et al. Ag nanoparticles-modified Fe2O3@MoS2 core-shell micro/nanocomposites for high-performance NO2 gas detection at low temperature. Journal of Alloys and Compounds, 2020, 829: 154471.
DOI
URL
|
[3] |
HE L, ZHANG W Y, ZHANG X Y, et al. 3D flower-like NiCo-LDH composites for a high-performance NO2 gas sensor at room temperature. Colloids and Surfaces A, 2020, 603: 125142.
DOI
URL
|
[4] |
WANG X D, WOLFBEIS S O. Fiber-optic chemical sensors and biosensors (2008-2012). Analytical Chemistry, 2013, 85(2): 487-508.
DOI
URL
|
[5] |
CHANG S C, STETTER D J. Electrochemical NO2 gas sensors: model and mechanism for the electroreduction of NO2. Electroanalysis, 1990, 2(5): 359-365.
DOI
URL
|
[6] |
ZHOU P F, SHEN Y B, LU W, et al. Highly selective NO2 chemiresistive gas sensor based on hierarchical In2O3 microflowers grown on clinoptilolite substrates. Journal of Alloys and Compounds, 2020, 828: 154395.
DOI
URL
|
[7] |
WU Y C, JOSHI N, ZHAO S L, et al. NO2 gas sensors based on CVD tungsten diselenide monolayer. Applied Surface Science, 2020, 529: 147110.
DOI
URL
|
[8] |
KIRUBA M S, ANN S J, PRAJWAL K, et al. Sputter deposited p-NiO/n-SnO2 porous thin film heterojunction based NO2 sensor with high selectivity and fast response. Sensors & Actuators: B Chemical, 2020, 310: 127830.
|
[9] |
ZENG W W, LIU Y Z, MEI J, et al. Hierarchical SnO2-Sn3O4 heterostructural gas sensor with high sensitivity and selectivity to NO2. Sensors & Actuators: B Chemical, 2019, 301: 127010.
|
[10] |
ZHANG B, CHENG M, LIU G N, et al. Room temperature NO2 gas sensor based on porous Co3O4 slices/reduced graphene oxide hybrid. Sensors & Actuators: B Chemical, 2018, 263: 387-399.
|
[11] |
WEI W, CHEN R S, QI W Z, et al. Reduced graphene oxide/mesoporous ZnO NSs hybrid fibers for flexible, stretchable, twisted, and wearable NO2 E-textile gas sensor. ACS Sensors, 2019, 4(10): 2809-2818.
DOI
URL
|
[12] |
NIU F, SHAO Z W, GAO H, et al. Si-doped graphene nanosheets for NOx gas sensing. Sensors & Actuators: B Chemical, 2021, 328: 129005.
|
[13] |
WU J, TAO K, GUO Y Y, et al. A 3D chemically modified graphene hydrogel for fast, highly sensitive, and selective gas sensor. Advanced Science, 2017, 4: 1600319.
DOI
URL
|
[14] |
LIU S, YU B, ZHANG H, et al. Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sensors & Actuators: B Chemical, 2014, 202: 272-278.
|
[15] |
LI W W, GUO J H, CAI L, et al. UV light irradiation enhanced gas sensor selectivity of NO2 and SO2 using rGO functionalized with hollow SnO2 nanofibers. Sensors & Actuators: B Chemical, 2019, 290: 443-452.
|
[16] |
MATATAGUIA D, VIDALA A S, GRACIA I, et al. Chemoresistive gas sensor based on ZIF-8/ZIF-67 nanocrystals. Sensors & Actuators: B Chemical, 2018, 274: 601-608.
|
[17] |
JAFARI N, ZEINALI S. Highly rapid and sensitive formaldehyde detection at room temperature using a ZIF-8/MWCNT nanocomposite. ACS Omega, 2020, 5: 4395-4402.
DOI
URL
|
[18] |
FENG S P, JIA X H, YANG J, et al. One-pot synthesis of core-shell ZIF-8@ZnO porous nanospheres with improved ethanol gas sensing. Journal of Materials Science: Materials in Electronics, 2020, 31: 22534-22545.
DOI
URL
|
[19] |
ZHAO J J, QUAN X, CHEN S, et al. Cobalt nanoparticles encapsulated in porous carbons derived from core-shell ZIF67@ZIF8 as efficient electrocatalysts for oxygen evolution reaction. ACS Applied Materials & Interfaces, 2017, 9(34): 28685-28694.
|
[20] |
LI Z, ZHANG Y, ZHANG H, et al. Superior NO2 sensing of MOF-derived indium-doped ZnO porous hollow cages. ACS Applied Materials & Interfaces, 2020, 12(33): 37489-37498.
|
[21] |
MA D F, SU Y J, TIAN T, et al. Multichannel room-temperature gas sensors based on magnetic field-aligned 3D Fe3O4@SiO2@reduced graphene oxide spheres. ACS Applied Materials & Interfaces, 2020, 12(33): 37418-37426.
|
[22] |
LI J, LU Y J, YE Q, et al. Carbon nanotube sensors for gas and organic vapor detection. Nano Letters, 2003, 3(7): 929-922.
DOI
URL
|
[23] |
BARSAN N, WEIMAR U. Conduction model of metal oxide gas sensors. Journal of Electroceramics, 2001, 7: 143-167.
DOI
URL
|
[24] |
LIU Y S, WANG R, ZHANG T, et al. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection. Journal of Colloid and Interface Science, 2019, 541: 249-257.
DOI
URL
|
[25] |
ZHANG H, YU L, LI Q, et al. Reduced graphene oxide/α-Fe2O3 hybrid nanocomposites for room temperature NO2 sensing. Sensors & Actuators: B Chemical, 2017, 241: 109-115.
|