无机材料学报 ›› 2021, Vol. 36 ›› Issue (11): 1185-1192.DOI: 10.15541/jim20210032
所属专题: 【结构材料】热障与环境障涂层
张亚晨1,2(), 孟佳1(), 蔡坤3, 盛晓晨1, 乐军1, 宋力昕1,2()
收稿日期:
2021-01-18
修回日期:
2021-02-25
出版日期:
2021-11-20
网络出版日期:
2021-03-15
通讯作者:
孟 佳, 高级工程师. E-mail: jiameng@mail.sic.ac.cn;宋力昕, 研究员. E-mail: lxsong@mail.sic.ac.cn
作者简介:
张亚晨(1995-), 女, 硕士研究生. E-mail: zhangych2@shanghaitech.edu.cn
基金资助:
ZHANG Yachen1,2(), MENG Jia1(), CAI Kun3, SHENG Xiaochen1, LE Jun1, SONG Lixin1,2()
Received:
2021-01-18
Revised:
2021-02-25
Published:
2021-11-20
Online:
2021-03-15
Contact:
MENG Jia, senior engineer. E-mail: jiameng@mail.sic.ac.cn;SONG Lixin, professor. E-mail: lxsong@mail.sic.ac.cn
About author:
ZHANG Yachen (1995-), female, Master candidate. E-mail: zhangych2@shanghaitech.edu.cn
Supported by:
摘要:
本研究借助声发射技术对铌基高温抗氧化涂层在常温下的弯曲失效过程进行了研究。利用k均值聚类方法对信号进行了分类, 结合截面扫描电镜观测结果确定高温抗氧化涂层在弯曲载荷下的信号分别对应基体变形、表面垂直裂纹、滑动型界面裂纹和张开型界面裂纹, 通过快速傅里叶变换得到了各类信号的主频分别为100、310、590和450 kHz, 借助小波分析得到了各信号的小波能量系数。涂层弯曲失效过程主要包括四个阶段, 分别为受拉侧表面垂直裂纹萌生的初始损伤阶段、表面垂直裂纹增殖阶段、两侧界面裂纹快速扩展的损伤积累阶段和受压侧涂层明显剥落的宏观剥落阶段。
中图分类号:
张亚晨, 孟佳, 蔡坤, 盛晓晨, 乐军, 宋力昕. 基于声发射技术的Si-Cr-Ti高温抗氧化涂层弯曲失效机理研究[J]. 无机材料学报, 2021, 36(11): 1185-1192.
ZHANG Yachen, MENG Jia, CAI Kun, SHENG Xiaochen, LE Jun, SONG Lixin. Bending Failure Mechanism Study of Si-Cr-Ti High Temperature Oxidation Resistance Coating via Acoustic Emission Technique[J]. Journal of Inorganic Materials, 2021, 36(11): 1185-1192.
图3 三点弯曲实验中应力-应变曲线和声发射事件数随时间变化的四个阶段
Fig. 3 Four stages of stress-strain curves and acoustic emission events with time in three-point bending experiments
图6 试片截面的SEM照片
Fig. 6 SEM images of specimen (a) Surface vertical cracks and interface cracks of the coating under tension; (b) Interface cracks of the coating under compression; (c) Surface vertical cracks of the coating under tension
图7 表面垂直裂纹(a)、基体变形(b)、张开型界面裂纹(c)和滑动型界面裂纹(d)的AE信号频谱
Fig. 7 Frequency spectra of the AE signal from (a) surface vertical cracks, (b) substrate deformation, (c) opening interface cracks, and (d) sliding interface cracks
图8 表面垂直裂纹(a)、基体变形(b)、张开型界面裂纹(c)和滑动型界面裂纹(d)的AE小波能量系数
Fig. 8 Wavelet energy spectra of the AE signal from (a) surface vertical cracks, (b) substrate deformation, (c) opening interface cracks, and (d) sliding interface cracks
[1] |
NARITA T, THOSIN K Z, FENGQUN L, et al. Development of Re-based diffusion barrier coatings on nickel-based superalloys. Materials and Corrosion-Werkstoffe und Korrosion, 2005, 56(12):923-929.
DOI URL |
[2] | RODHAMMER P, KNABL W, SEMPRIMOSCHNIG C, et al. Protection of Nb-based and Ta-based alloys against high- temperature oxidation. International Journal of Refractory Metals & Hard Materials, 1994, 12(5):283-293. |
[3] | 郑欣, 白润, 王东辉, 等. 航天航空用难熔金属材料的研究进展. 稀有金属材料与工程, 2011, 40(10):1871-1875. |
[4] | BOUILLET C, CIOSMAK D, LALLEMANT M, et al. Oxidation of niobium sheets at high temperature. Solid State Ionics, 1997, 101:819-824. |
[5] |
HELLWIG O AND ZABEL H. Oxidation of Nb(110) thin films on a-plane sapphire substrates: an X-ray study. Physica B, 2000, 283(1/2/3):228-231.
DOI URL |
[6] | 李丹, 贾中华, 许谅亮. 新型多元铌合金的高温氧化行为. 宇航材料工艺, 2008, 038(6):73-76. |
[7] | TANAKA R, KASAMA A, FUJIKURA M, et al. Newly Developed Niobium-based Superalloys for Elevated Temperature Application. Warrendale: Minerals, Metals & Materials Soc, Swiss: TMS. 2004: 89-98. |
[8] | WANG YU, GAO JIAPING, LI YUNPENG, et al. Microstructure and oxidation-resistance of silicide coatings on C-103 niobium alloys. Journal of Inorganic Materials, 2000, 15(1):143-149. |
[9] | 唐勇, 杜继红, 李争显, 等. 铌及铌合金高温抗氧化防护涂层研究. 表面技术, 2009, 38(5):42. |
[10] | LORIA E A. Niobium-base superallloys via powder-metallurgy technology. Journal of Metals, 1987, 39(7):22-26. |
[11] | PERKINS R A, MEIER G H. The oxidation behavior and protection of niobium. JOM-Journal of the Minerals Metals & Materials Society, 1990, 42(8):17-21. |
[12] | 王禹, 陈日文, 郜嘉平, 等. Ti-Cr-Si硅化物涂层结构及裂纹扩展. 稀有金属材料与工程, 2000, 10(05):315-320. |
[13] | 张绪虎, 徐方涛, 贾中华, 等. 难熔金属表面高温抗氧化涂层技术现状. 中国材料进展, 2013, 32(4):21-30. |
[14] | 田进鹏, 周小军, 赵刚, 等. 铌钨合金抗高温氧化硅化物涂层的性能. 材料保护, 2016, 49(5):8-11. |
[15] | 唐新阳, 沈统, 肖来荣, 等. Nb521表面改性Si-Cr-Ti涂层的高温氧化行为. 腐蚀与防护, 2016, 37(5):392-397. |
[16] | 潘兆义, 蔡刚, 马双民, 等. 硅化物涂层对铌钨合金的热防护行为研究. 火箭推进, 2015, 41(3):59-65. |
[17] |
MA X Q, CHO S, TAKEMOTO M. Acoustic emission source analysis of plasma sprayed thermal barrier coatings during four-point bend tests. Surface & Coatings Technology, 2001, 139(1):55-62.
DOI URL |
[18] |
WANG L, MING C, ZHONG X H, et al. Prediction of critical rupture of plasma-sprayed yttria stabilized zirconia thermal barrier coatings under burner rig test via finite element simulation and in-situ acoustic emission technique. Surface & Coatings Technology, 2019, 367:58-74.
DOI URL |
[19] |
YANG L, ZHONG Z C, YOU J, et al. Acoustic emission evaluation of fracture characteristics in thermal barrier coatings under bending. Surface & Coatings Technology, 2013, 232:710-718.
DOI URL |
[20] |
YANG L, ZHONG Z C, ZHOU Y C, et al. Acoustic emission assessment of interface cracking in thermal barrier coatings. Acta Mechanica Sinica, 2016, 32(2):342-348.
DOI URL |
[21] |
YAO W B, DAI C Y, MAO W G, et al. Acoustic emission analysis on tensile failure of air plasma-sprayed thermal barrier coatings. Surface & Coatings Technology, 2012, 206(18):3803-3807.
DOI URL |
[22] | MAO W G, WU D J, YAO W B, et al. Multiscale monitoring of interface failure of brittle coating/ductile substrate systems: a non-destructive evaluation method combined digital image correlation with acoustic emission. Journal of Applied Physics, 2011, 110(8):5. |
[23] |
WANG L, NI J X, SHAO F, et al. Failure behavior of plasma-sprayed yttria-stabilized zirconia thermal barrier coatings under three-point bending test via acoustic emission technique. Journal of Thermal Spray Technology, 2017, 26(1/2):116-131.
DOI URL |
[24] |
WANG L, WANG H D, DI Y L, et al. Research on strain distribution and damage behavior of thermal barrier coatings based on digital image correlation. International Journal of Applied Ceramic Technology, 2020, 17(5):2156-2161.
DOI URL |
[25] |
ZHU W, WU Q, YANG L, et al. In situ characterization of high temperature elastic modulus and fracture toughness in air plasma sprayed thermal barrier coatings under bending by using digital image correlation. Ceramics International, 2020, 46(11):18526-18533.
DOI URL |
[26] |
MAJEWSKI M S, KELLEY C, HASSAN W, et al. Laser induced breakdown spectroscopy for contamination removal on engine-run thermal barrier coatings. Surface & Coatings Technology, 2011, 205(19):4614-4619.
DOI URL |
[27] |
MANERO A, SELIMOV A, FOULIARD Q, et al. Piezospectroscopic evaluation and damage identification for thermal barrier coatings subjected to simulated engine environments. Surface & Coatings Technology, 2017, 323:30-38.
DOI URL |
[28] | RINALDI C, DE MARIA L, MANDELLI M. Assessment of the spent life fraction of gas turbine blades by coating life modeling and photostimulated luminescence piezospectroscopy. Journal of Engineering for Gas Turbines and Power-Transactions of the Asme, 2010, 132(11):4. |
[29] |
WANG X, ATKINSON A, CHIRIVI L, et al. Evolution of stress and morphology in thermal barrier coatings. Surface & Coatings Technology, 2010, 204(23):3851-3857.
DOI URL |
[30] |
WANG X, LEE G, ATKINSON A. Investigation of TBCs on turbine blades by photoluminescence piezospectroscopy. Acta Materialia, 2009, 57(1):182-195.
DOI URL |
[31] | JAYARAJ B, VISHWESWARAIAH S, DESAI V H, et al. Electrochemical impedance spectroscopy of thermal barrier coatings as a function of isothermal and cyclic thermal exposure. Surface & Coatings Technology, 2004, 177:140-151. |
[32] | THORNTON J, COOKSON D, PESCOTT E. The measurement of strains within the bulk of aged and as-sprayed thermal barrier coatings using synchrotron radiation. Surface & Coatings Technology, 1999, 120:96-102. |
[33] | YU F L, BENNETT T D. Phase of thermal emission spectroscopy for properties measurements of delaminating thermal barrier coatings. Journal of Applied Physics, 2005, 98(10):8. |
[34] | DAVIES D L, DON BOULDIN. A cluster separation measure. IEEE Trans. Pattern Anal. Mach. Intell., 1979, PAMI-1(2):224-227. |
[35] |
BENSON P M, VINCIGUERRA S, MEREDITH P G, et al. Laboratory simulation of volcano seismicity. Science, 2008, 322(5899):249-252.
DOI URL |
[36] |
YANG L, ZHOU Y C, LU C. Damage evolution and rupture time prediction in thermal barrier coatings subjected to cyclic heating and cooling: an acoustic emission method. Acta Materialia, 2011, 59(17):6519-6529.
DOI URL |
[37] | YANG L, ZHOU Y C, MAO W G, et al. Real-time acoustic emission testing based on wavelet transform for the failure process of thermal barrier coatings. Applied Physics Letters, 2008, 93(23):299. |
[38] | 李巧莲, 张坤, 张凯, 等. 热喷涂涂层界面断裂韧性的反向三点弯曲法试验. 金属热处理, 2010, 35(1):114-116. |
[39] | 朱旺. 屈曲法表征薄膜/韧性基底材料体系的界面结合性能. 湘潭: 湘潭大学博士学位论文, 2014. |
[40] |
GUTENBERG B, RICHTER C F. Frequency of earthquakes in Califonia. Bulletin of the Seismological Society of America, 1944, 34(4):185-188.
DOI URL |
[41] |
COLOMBO S, MAIN I G, FORDE M C. Assessing damage of reinforced concrete beam using “ b-value” analysis of acoustic emission signals. Journal of Materials in Civil Engineering, 2003, 15(3):280-286.
DOI URL |
[42] | COX S J D, MEREDITH P G. Microcrack formation and material softening in rock measured by monitoring acoustic emissions. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts., 1993, 30(1):11-24. |
[43] | 吴多锦. 热障涂层界面破坏实时测试分析及实验模拟系统的研制. 湘潭: 湘潭大学硕士学位论文, 2011. |
[1] | 李陇彬, 薛玉冬, 胡建宝, 杨金山, 张翔宇, 董绍明. 碳化硅纳米线增韧碳化硅纤维/碳化硅基体损伤行为研究[J]. 无机材料学报, 2021, 36(10): 1111-1117. |
[2] | 张勇祯, 童小燕, 姚磊江, 李斌, 白国栋. 基于改进遗传算法的C/SiC拉伸损伤声发射模式识别[J]. 无机材料学报, 2020, 35(5): 593-600. |
[3] | 王亚楠, 李华, 王正坤, 厉青峰, 练晨, 何鑫. 扩散应力诱导的锂离子电池失效机理研究进展[J]. 无机材料学报, 2020, 35(10): 1071-1087. |
[4] | 叶长辉, 顾瑜佳, 王贵欣, 毕丽丽. 银纳米线透明导电薄膜的失效机理研究[J]. 无机材料学报, 2019, 34(12): 1257-1264. |
[5] | 黄喜鹏, 王波, 杨成鹏, 潘文革, 刘小瀛. 基于声发射信号的三维针刺C/SiC复合材料拉伸损伤演化研究[J]. 无机材料学报, 2018, 33(6): 609-616. |
[6] | 张小锋, 周克崧, 张吉阜, 张 永, 刘 敏, 邓春明. 热震中7YSZ热障涂层结构演变[J]. 无机材料学报, 2015, 30(12): 1261-1266. |
[7] | 邓启煌, 王连军, 许虹杰, 王宏志, 江 莞. MSP试验法评价PZT陶瓷的循环疲劳寿命[J]. 无机材料学报, 2012, 27(10): 1047-1052. |
[8] | 潘文革,矫桂琼,王波,管国阳. 声发射技术在三维编织C/SiC复合材料拉伸损伤分析中的应用[J]. 无机材料学报, 2004, 19(4): 871-875. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||