[1] |
AlZAHRANI A A, ZAINAL Z, TALIB Z A, et al. Study the effect of the heat treatment on the photoelectrochemical performance of binary heterostructured photoanode Ag2S/ZnO nanorod arrays in photoelectrochemical cells. Materials Science Forum, 2020, 1002:187-199.
DOI
URL
|
[2] |
ALHARTHI S S, ALZAHRANI A, RAZVI M A N, et al. Spectroscopic and electrical properties of Ag2S/PVA nanocomposite films for visible-light optoelectronic devices. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30:3878-3885.
DOI
URL
|
[3] |
XIE Y, YOO S H, CHEN C, et al. Ag2S quantum dots-sensitized TiO2 nanotube array photoelectrodes. Materials Science and Engineering B, 2012, 177(1):106-111.
DOI
URL
|
[4] |
KONDRATENKO T S, SMIRNOV M S, OVCHINNIKOV O V, et al. Nonlinear optical properties of hybrid associates of Ag2S quantum dots with erythrosine molecules. Optik-International Journal for Light and Electron Optics, 2020, 200:163391.
DOI
URL
|
[5] |
YOU J C, ZHAN S B, WEN J, et al. Construction of heterojunction of Ag2S modified yttrium manganate visible photocatalyst and study on photocatalytic mechanism. Optik-International Journal for Light and Electron Optics, 2020, 217:164900.
DOI
URL
|
[6] |
VOGEL R, HOYER P, WELLER H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. The Journal of Physical Chemistry, 1994, 98(12):3183-3188.
DOI
URL
|
[7] |
DONG Z M, SUN H S, XU J, et al. Preparation of macroscopical long Ag2S nanowire clusters characteristics. Acta Physica Sinica, 2011, 60(7):676-680.
|
[8] |
DU Y P, XU B, FU T, et al. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. Journal of the American Chemical Society, 2010, 132(5):1470-1471.
DOI
URL
|
[9] |
ZHANG Y, HONG G S, ZHANG Y J, et al. Ag2S quantum dot: a bright and biocompatible fluorescent nanoprobe in the second near-infrared window. ACS Nano, 2012, 6(5):3695-3702.
DOI
URL
|
[10] |
HWANG I, SEOL M, Kim H,, et al. Improvement of photocurrent generation of Ag2S sensitized solar cell through co-sensitization with CdS. Applied Physics Letters, 2013, 103(2): 023902-1-4.
|
[11] |
SHI X, CHEN H Y, HAO F, et al. Room-temperature ductile inorganic semiconductor. Nature Materials, 2018, 17(5):421-426.
DOI
URL
|
[12] |
CHEN Z W, ZHANG X Y, LIN S Q, et al. Rationalizing phonon dispersion for lattice thermal conductivity of solids. National Science Review, 2018, 5(6):888-894.
DOI
URL
|
[13] |
JEFFREY S G, AGNE M T, RAMYA G. Thermal conductivity of complex materials. National Science Review, 2019, 6(3):380-381.
DOI
URL
|
[14] |
WANG T, CHEN H Y, QIU P F, et al. Thermoelectric properties of Ag2S superionic conductor with intrinsically low lattice thermal conductivity. Acta Physica Sinica, 2019, 68(9):18-26.
|
[15] |
CHEN H Y, YUE Z M, REN D D, et al. Thermal conductivity during phase transitions. Advanced Materials, 2019, 31(6):1806518.
|
[16] |
LU P, LIU H L, YUAN X, et al. Multiformity and fluctuation of Cu ordering in Cu2Se thermoelectric materials. Journal of Materials Chemistry A, 2015, 3(13):6901-6908.
DOI
URL
|
[17] |
ZHANG Y B, WANG Y W, XI L L, et al. Electronic structure of antifluorite Cu2X (X=S, Se, Te) within the modified Becke- Johnson potential plus an on-site Coulomb U. Journal of Chemical Physics, 2014, 140(7):074702.
DOI
URL
|
[18] |
JIN M, LIN S Q, LI W, et al. Fabrication and thermoelectric properties of single-crystal argyrodite Ag8SnSe6. Chemistry of Materials, 2019, 31:2603-2610.
DOI
URL
|
[19] |
JIANG J, CHEN L D, BAI S Q, et al. Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting. Journal of Crystal Growth, 2005, 277(1-4):258-263.
DOI
URL
|
[20] |
WANG X, XU J T, LIU G Q, et al. Texturing degree boosts thermoelectric performance of silver-doped polycrystalline SnSe. NPG Asia Materials, 2017, 9(8):426.
|
[21] |
WANG X B, QIU P F, ZHANG T S, et al. Compound defects and thermoelectric properties in ternary CuAgSe-based materials. Journal of Materials Chemistry A, 2015, 3(26):13662-13670.
DOI
URL
|
[22] |
DAY T, DRYMIOTIS F, ZHANG T S, et al. Evaluating the potential for high thermoelectric efficiency of silver selenide. Journal of Materials Chemistry C, 2013, 1(45):7568-7573.
DOI
URL
|
[23] |
PEI Y Z, HEINZ N A, SNYDER G J. Alloying to increase the band gap for improving thermoelectric properties of Ag2Te. Journal of Materials Chemistry, 2011, 21(45):18256-18260.
DOI
URL
|