[1] |
DISALVO. Thermoelectric cooling and power generation. Science , 1999, 285(5428):703-706.
DOI
URL
|
[2] |
SNYDER G J, TOBERER E S. Complex thermoelectric materials. Nature Materials , 2008, 7(2):105-114.
DOI
URL
|
[3] |
WANG X, LI W, WANG C, et al. Single parabolic band transport in p-type EuZn2Sb2 thermoelectrics. Journal of Materials Chemistry A , 2017, 5(46):24185-24192.
DOI
URL
|
[4] |
HE J, TRITT T M. Advances in thermoelectric materials research: looking back and moving forward. Science , 2017, 357(1369):eaak9997.
|
[5] |
TANI J I, KIDO H. Thermoelectric properties of Bi-doped Mg2Si semiconductors. Physica B: Condensed Matter , 2005, 364(1-4):218-224.
DOI
URL
|
[6] |
OHNO S, IMASATO K, ANAND S, et al. Phase boundary mapping to obtain n-type Mg3Sb2-based thermoelectrics. Joule , 2018, 2(1):141-154.
DOI
URL
|
[7] |
PONNAMBALAM V, MORELLI D T. On the thermoelectric properties of Zintl compounds Mg3Bi2-xPnx(Pn=P and Sb). Journal of Electronic Materials , 2013, 42(7):1307-1312.
DOI
URL
|
[8] |
CONDRON C L, KAUZLARICH S M, GASCOIN F, et al. Thermoelectric properties and microstructure of Mg3Sb2. Journal of Solid State Chemistry , 2006, 179(8):2252-2257.
DOI
URL
|
[9] |
BHARDWAJ A, SHUKLA A K, DHAKATE S R, et al. Graphene boosts thermoelectric performance of a Zintl phase compound. RSC Advances , 2015, 5(15):11058-11070.
DOI
URL
|
[10] |
BHARDWAJ A, RAJPUT A, SHUKLA A K, et al. Mg3Sb2-based Zintl compound: a non-toxic, inexpensive and abundant thermoelectric material for power generation. RSC Advances , 2013, 3(22):8504-8516.
DOI
URL
|
[11] |
BHARDWAJ A, MISRA D K. Enhancing thermoelectric properties of a p-type Mg3Sb2-based Zintl phase compound by Pb substitution in the anionic framework. RSC Advances , 2014, 4(65):34552-34560.
DOI
URL
|
[12] |
BHARDWAJ A, CHAUHAN N S, MISRA D K. Significantly enhanced thermoelectric figure of merit of p-type Mg3Sb2-based Zintl phase compounds via nanostructuring and employing high energy mechanical milling coupled with spark plasma sintering. Journal of Materials Chemistry A , 2015, 3(20):10777-10786.
DOI
URL
|
[13] |
BHARDWAJ A, CHAUHAN N S, GOEL S, et al. Tuning the carrier concentration using Zintl chemistry in Mg3Sb2, and its implications for thermoelectric figure-of-merit. Physical Chemistry Chemical Physics , 2016, 18(8):6191-6200.
DOI
URL
|
[14] |
AHMADPOUR F, KOLODIAZHNYI T, MOZHARIVSKYJ Y. Structural and physical properties of Mg3-xZnxSb2 (x=0-1.34). Journal of Solid State Chemistry , 2007, 180(9):2420-2428.
DOI
URL
|
[15] |
SONG L, ZHANG J, IVERSEN B B. Simultaneous improvement of power factor and thermal conductivity via Ag doping in p-type Mg3Sb2 thermoelectric materials. Journal of Materials Chemistry A , 2017, 5(10):4932-4939.
DOI
URL
|
[16] |
SHUAI J, WANG Y M, KIM H S, et al. Thermoelectric properties of Na-doped Zintl compound: Mg3-xNaxSb2. Acta Materialia , 2015, 93:187-193.
DOI
URL
|
[17] |
TAMAKI H, SATO H K, KANNO T. Isotropic conduction network and defect chemistry in Mg3+dSb2-based layered Zintl compounds with high thermoelectric performance. Adv. Mater. , 2016, 28(46):10182-10187.
DOI
URL
|
[18] |
GORAI P, ORTIZ B R, TOBERER E S, et al. Investigation of n-type doping strategies for Mg3Sb2. Journal of Materials Chemistry A , 2018, 6(28):13806-13815.
DOI
URL
|
[19] |
MAO J, WU Y, SONG S, et al. Defect engineering for realizing high thermoelectric performance in n-type Mg3Sb2-based materials. ACS Energy Letters , 2017, 2(10):2245-2250.
DOI
URL
|
[20] |
MISRA D K, RAJPUT A, BHARDWAJ A, et al. Enhanced power factor and reduced thermal conductivity of a half-Heusler derivative Ti9Ni7Sn8: a bulk nanocomposite thermoelectric material. Applied Physics Letters , 2015, 106(10):103901.
DOI
URL
|
[21] |
MI J L, ZHAO X B, ZHU T J, et al. Thermoelectric properties of Yb0.15Co4Sb12 based nanocomposites with CoSb3 nano-inclusion. Journal of Physics D-Applied Physics , 2008, 41(20):205403.
DOI
URL
|
[22] |
PENG B, ZHANG H, SHAO H, et al. Chemical intuition for high thermoelectric performance in monolayer black phosphorus, α-arsenene and aW-antimonene. Journal of Materials Chemistry A , 2018, 6(5):2018-2033.
DOI
URL
|
[23] |
SUN L, WU C Y, HAN J C, et al. Band structure and thermoelectric performances of antimony under trigonal transformation. Journal of Applied Physics , 2019, 125(14):145102.
DOI
URL
|
[24] |
ZHANG Q, CHENG L, LIU W, et al. Low effective mass and carrier concentration optimization for high performance p-type Mg2(1-x)Li2xSi0.3Sn0.7 solid solutions. Phys. Chem. Chem. Phys. , 2014, 16(43):23576-23583.
DOI
URL
|
[25] |
GORDON I U, WAGNER P, DAS A U, et al. Comparative Hall studies in the electron- and hole-doped manganites La0.33Ca0.67MnO3 and La0.70Ca0.30MnO3. Phys. Rev. B , 2000, 62(17):11633-11638.
DOI
URL
|
[26] |
ZHANG J, SONG L, MAMAKHEL A, et al. High-performance low-cost n-type Se-doped Mg3Sb2-based Zintl compounds for thermoelectric application. Chemistry of Materials , 2017, 29(12):5371-5383.
DOI
URL
|
[27] |
CHEN C, LI X F, LI S, et al. Enhanced thermoelectric performance of p-type Mg3Sb2 by lithium doping and its tunability in an anionic framework. Journal of Materials Science , 2018, 53(23):16001-16009.
DOI
URL
|
[28] |
TRITT T M. Thermal conductivity: theory, properties and applications. New York: Springer Science & Business Media, 2004: 12-20.
|