无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 629-636.DOI: 10.15541/jim20200495
所属专题: 能源材料论文精选(2021); 【虚拟专辑】钙钛矿材料(2020~2021); 【虚拟专辑】太阳能电池(2020~2021); 【能源环境】钙钛矿; 【能源环境】太阳能电池
刘雯雯1(), 胡志蕾1, 王立1, 曹梦莎1, 张晶1, 张婧1, 张帅1(), 袁宁一1, 丁建宁2()
收稿日期:
2020-08-27
修回日期:
2020-10-22
出版日期:
2021-06-20
网络出版日期:
2020-11-05
通讯作者:
张 帅, 副教授. E-mail: shuaizhang@cczu.edu.cn; 丁建宁, 教授. E-mail: dingjn@cczu.edu.cn
作者简介:
刘雯雯(1997-), 女, 硕士研究生. E-mail: 2356143925@qq.com
基金资助:
LIU Wenwen1(), HU Zhilei1, WANG Li1, CAO Mengsha1, ZHANG Jing1, ZHANG Jing1, ZHANG Shuai1(), YUAN Ningyi1, DING Jianning2()
Received:
2020-08-27
Revised:
2020-10-22
Published:
2021-06-20
Online:
2020-11-05
Contact:
ZHANG Shuai, associate professor. E-mail: shuaizhang@cczu.edu.cn; DING Jianning, professor. E-mail: dingjn@cczu.edu.cn
About author:
LIU Wenwen(1997-), female, Master candidate. E-mail: 2356143925@qq.com
Supported by:
摘要:
近年来钙钛矿材料因其优异的光电性能而成为光伏领域的研究热点, 但调控钙钛矿太阳电池内界面缺陷仍是亟需解决的关键问题之一。本研究在溶液两步法制备钙钛矿光吸收层的过程中引入有机小分子添加剂(L-3-(4吡啶基)-丙氨酸(L-3-(4-pyridyl)-alanine, (PLA))。测试结果显示引入PLA可提高器件的各光电性能参数, 含PLA器件的最优能量转换效率为21.53%, 而参照器件为20.10%。进一步研究表明引入PLA可延长荧光寿命, 降低器件的陷阱态密度(从5.59×1016cm-3降至3.40×1016cm-3), 促进界面电荷抽取, 抑制载流子复合。器件性能的提升是由于PLA促进PbI2在钙钛矿薄膜晶界处富集及PLA在界面处锚定起到了钝化缺陷的作用。本研究可以为进一步调控钙钛矿太阳电池的缺陷提供借鉴。
中图分类号:
刘雯雯, 胡志蕾, 王立, 曹梦莎, 张晶, 张婧, 张帅, 袁宁一, 丁建宁. L-3-(4-吡啶基)-丙氨酸钝化钙钛矿太阳电池界面缺陷[J]. 无机材料学报, 2021, 36(6): 629-636.
LIU Wenwen, HU Zhilei, WANG Li, CAO Mengsha, ZHANG Jing, ZHANG Jing, ZHANG Shuai, YUAN Ningyi, DING Jianning. Passiviation of L-3-(4-Pyridyl)-alanine on Interfacial Defects of Perovskite Solar Cell[J]. Journal of Inorganic Materials, 2021, 36(6): 629-636.
图2 (a, c, e)参照及(b, d, f)PLA修饰FTO/TiO2/钙钛矿薄膜的(a,b)表面、(c,d)截面SEM照片和(e,f)晶粒尺寸分布图
Fig. 2 (a,b) Surface and (c,d) cross sectional SEM images, (e,f) grain size distributions of FTO/TiO2/perovskite films (a, c, e) without and (b, d, f) with PLA
图3 (a)钙钛矿薄膜的ATR-FT-IR光谱((b)为(a)中黑色虚线矩形区域的放大图), (c)薄膜的紫外-可见吸收光谱图和(d)XRD图谱
Fig. 3 (a) ATR-FT-IR spectra, ((b) magnified ATR-FT-LR spectra of rectangular area in (a)), (c) UV-Vis absorption spectra and (d) XRD patterns of FTO/TiO2/perovskite films with and without PLA
Device | JSC(SD)/(mA·cm-2) | VOC(SD)/V | FF(SD)/% | PCE(SD)/% |
---|---|---|---|---|
Without PLA | 23.84(0.74) | 1.07(0.02) | 76.80(1.15) | 19.49(0.48) |
With PLA | 24.37(0.50) | 1.07(0.02) | 78.74(1.43) | 20.55(0.39) |
表1 PLA修饰及参照PSC器件光电性能参数的平均值和标准偏差
Table 1 Mean values and standard deviation (SD) of photovoltaic parameters for PSC devices without and with PLA
Device | JSC(SD)/(mA·cm-2) | VOC(SD)/V | FF(SD)/% | PCE(SD)/% |
---|---|---|---|---|
Without PLA | 23.84(0.74) | 1.07(0.02) | 76.80(1.15) | 19.49(0.48) |
With PLA | 24.37(0.50) | 1.07(0.02) | 78.74(1.43) | 20.55(0.39) |
图4 PLA修饰及参照PSC器件的(a)JSC、(b)VOC、(c)FF和(d)PCE的统计分布图
Fig. 4 Statistical deviations of (a)JSC, (b)VOC, (c) FF, and (d) PCE for PSC devices without and with PLA
图5 最优(a)参照和(b)PLA修饰PSC器件的正反扫J-V曲线, (c)反扫J-V曲线的对比, (d)外量子效率谱图及JSC积分曲线
Fig. 5 Forward and reverse scan J-V curves of the optimal PSC devices (a) without and (b) with PLA, (c) comparison of the reverse J-V curves, and (d) external quantum efficiency spectra and integrated JSC curves for the optimal PSC devices without and with PLA
图6 PLA修饰及参照玻璃/钙钛矿薄膜的(a)稳态PL光谱, (b)TRPL衰减图谱(λexcitation=510 nm)和TRPL的拟合结果
Fig. 6 (a) PL spectra, (b) TRPL spectra (λexcitation=510 nm) and TRPL fitting results of glass/perovskite films with and without PLA
图7 (a)PLA修饰钙钛矿薄膜纯电子注入器件的结构示意图, (b)PLA修饰及参照钙钛矿薄膜纯电子注入器件的SCLC测试结果
Fig. 7 (a) Schematic diagram of electron-only perovskite film device with PLA, and (b) SCLC measurements of electron-only perovskite film devices with and without PLA
图S1 (a, c)参照和(b, d)PLA修饰FTO/TiO2/PbI2薄膜的(a,b)表面和(c,d)截面SEM照片
Fig. S1 (a,b) Surface and (c,d) cross sectional SEM images of FTO/TiO2/PbI2 film without PLA (a, c) and with PLA (b, d)
Device | RS / (Ω·cm-2) | R1 / (Ω·cm-2) | R2 / (Ω·cm-2) |
---|---|---|---|
Without PLA (Illumination) | 1.80 | 58.70 | 7.90 |
With PLA (Illumination) | 1.43 | 15.74 | 40.49 |
Without PLA (Dark) | 0.78 | 3.46×105 | 2.27×104 |
With PLA (Dark) | 1.21 | 2.15×104 | 4.50×105 |
表S1 光照和暗态环境下参照及PLA修饰PSC器件的EIS拟合参数
Table S1 EIS fitting parameters of PSC without and with PLA under illumination and in dark
Device | RS / (Ω·cm-2) | R1 / (Ω·cm-2) | R2 / (Ω·cm-2) |
---|---|---|---|
Without PLA (Illumination) | 1.80 | 58.70 | 7.90 |
With PLA (Illumination) | 1.43 | 15.74 | 40.49 |
Without PLA (Dark) | 0.78 | 3.46×105 | 2.27×104 |
With PLA (Dark) | 1.21 | 2.15×104 | 4.50×105 |
[1] |
KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc., 2009,131(17):6050-6051.
DOI URL |
[2] | Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html. |
[3] |
GREEN M A. The path to 25% silicon solar cell efficiency: history of silicon cell evolution. Prog. Photovolt: Res. Appl., 2009,17:183-189.
DOI URL |
[4] |
XIONG H, ZHANG B X, JIA W, et al. Polymer PVP additive for improving stability of perovskite solar cells. J. Inorg. Mater., 2019,34(1):96-102.
DOI URL |
[5] | YU S W, ZHAO Z W, ZHAO J J, et al. Research progress in novel in-situ integrative photovoltaic-storage tandem cells. J. Inorg. Mater., 2020,35(6):623-632. |
[6] |
CHU Z Y, LI G L, JIANG Z H, et al. Recent progress in high-quality perovskite CH3NH3PbI3 single crystal. J. Inorg. Mater., 2018,33(10):1035-1045.
DOI URL |
[7] |
PATIL J V, MALI S S, HONG C K. A thiourea additive-based quadruple cation lead halide perovskite with an ultra-large grain size for efficient perovskite solar cells. Nanoscale, 2019,11:21824-21833.
DOI URL |
[8] |
ZHANG S, LU Y T, LIN B C, et al. PVDF-HFP additive for visible-light-semitransparent perovskite films yielding enhanced photovoltaic performance. Sol. Energy Mat. Sol. C, 2017,170:178-186.
DOI URL |
[9] |
ZHENG X P, CHEN B, DAI J, et al. Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations. Nat. Energy, 2017,2:17102.
DOI URL |
[10] |
DE ROO J, IBÁÑEZ M, GEIREGAT P, et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano, 2016,10:2071-2081.
DOI URL |
[11] |
YANG S, DAI J, YU Z H, et al. Tailoring passivation molecular structures for extremely small open circuit voltage loss in perovskite solar cells. J. Am. Chem. Soc., 2019,141(14):5781-5787.
DOI URL |
[12] |
BARLY I L, DEQUILETTES D W, PAZOS-QUTON, et al. Hybrid perovskite films approaching the radiative limit with over 90% photoluminescence quantum efficiency. Nat. Photonics, 2018,12:355-361.
DOI URL |
[13] |
YANG J, LIU C, CAI C, et al. High performance perovskite solar cells with excellent humidity and thermo stability via fluorinated perylenediimide. Adv. Energy. Mater., 2019,9(18):1900198.
DOI URL |
[14] |
ZHANG S, HU Z L, ZHANG J, et al. Interface engineering via phthalocyanine decoration of perovskite solar cells with high efficiency and stability. J. Power Sources, 2019,438:226987.
DOI URL |
[15] |
WANG H H, WANG Z W, YANG Z, et al. Ligand-modulated excess PbI2 nanosheets for highly efficient and stable perovskite solar cells. Adv. Mater., 2020,32(21):2000865.
DOI URL |
[16] |
NIU T Q, LU J, MUNIR R, et al. Stable high-performance perovskite solar cells via grain boundary passivation. Adv. Mater., 2018,30(16):1706576.
DOI URL |
[17] |
DE WOLF S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett., 2014,5(6):1035-1039.
DOI URL |
[18] |
STRANKS S D, EPERON G E, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 2013,342(6156):341-344.
DOI URL |
[19] |
CHEN J H, ZUO L J, ZHANG Y Z, et al. High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater., 2018,8(23):1800438.
DOI URL |
[20] |
WHEELER L M, SANEHIRA E M, MARSHALL A R, et al. Targeted ligand-exchange chemistry on cesium lead halide perovskite quantum dots for high-efficiency photovoltaics. J. Am. Chem. Soc., 2018,140(33):10504-10513.
DOI URL |
[21] |
IM J H, JANG I H, PELLET N, et al. Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol., 2014,9(181):927-932.
DOI URL |
[22] |
LIU Y, MONOJIT B, LAWRENCE A R, et al. Understanding interface engineering for high-performance fullerene/perovskite planar heterojunction solar cells. Adv. Energy Mater., 2015,6:1501606.
DOI URL |
[23] |
WU Y H, WANG P, ZHANG W H. Heterojunction engineering for high efficiency cesium formamidinium double-cation lead halide perovskite solar cells. ChemSusChem, 2018,11(5):837-842.
DOI URL |
[24] |
HOU Y, DU X Y, SIMON S, et al. A generic interface to reduce the efficiency-stability-cost gap of perovskite solar cells. Science, 2017,358(6367):1192-1197.
DOI URL |
[25] |
ZHANG J, SUN Q, CHEN Q Y, et al. High efficiency planar p-i-n perovskite solar cells using low-cost fluorene-based hole transporting material. Adv. Funct. Mater, 2019,29:1900484.
DOI URL |
[26] | CHEN H Y, ZHAN Y, XU G Y, et al. Organic n-type molecule: managing the electronic states of bulk perovskite for high-performance photovoltaics. Adv. Funct. Mater., 2020,120(6):8267-8302. |
[27] |
DEQUILETTES D W, VORPAHL S M, STRANKS S D, et al. Impact of microstructure on local carrier lifetime in perovskite solar cells. Science, 2015,348(6235):683-686.
DOI URL |
[28] |
WANG L, LIU H, LIU C W, et al. Approaching optimal hole transport layers by organic monomolecular strategy for efficient inverted perovskite solar cells. J. Mater. Chem. A, 2020,4(6):1-21.
DOI URL |
[29] |
HOU M N, XU Y Z, ZHOU B, et al. Aryl diammonium iodide passivation for efficient and stable hybrid organ-inorganic perovskite solar cells. Adv. Funct. Mater., 2020,30(34):2002366.
DOI URL |
[30] |
SON D Y, KIM S G, SEO J Y, et al. Universal approach toward hysteresis free perovskite solar cell via defect engineering. J. Am. Chem. Soc., 2018,140(4):1358-1364.
DOI URL |
[31] |
GUERRERO A, GARCIA-BELMONTE, MORA-SERO I, et al. Properties of contact and bulk impedances in hybrid lead halide perovskite solar cells including inductive loop elements. J. Phys. Chem. C, 2016,120(15):8023-8032.
DOI URL |
[32] |
WANG Q, MOSER J E, GRTZEL M. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells. J. Phys. Chem. B, 2005,109(31):14945-53.
DOI URL |
[33] |
ZHANG S, DONG G Y, LIN B C, et al. A polymer gel electrolyte with an inverse opal structure and its effects on the performance of quasi-solid-state dye-sensitized solar cells. J. Power Sources, 2015,277:52-58.
DOI URL |
[34] |
ZHANG S, DONG G Y, LIN B C, et al. Performance enhancement of aqueous dye-sensitized solar cells via introduction of a quasi- solid-state electrolyte with an inverse opal structure. Sol Energy, 2016,127:19-27.
DOI URL |
[35] |
YANG J A, XIAO A D, XIE L S, et al. Precise control of PbI2 excess into grain boundary for efficacious charge extraction in off-stoichiometric perovskite solar cells. Electrochim. Acta, 2020,338:135697.
DOI URL |
[1] | 焦博新, 刘兴翀, 全子威, 彭永姗, 周若男, 李海敏. L-精氨酸掺杂钙钛矿太阳电池性能研究[J]. 无机材料学报, 2022, 37(6): 669-675. |
[2] | 徐顺建, 肖宗湖, 罗晓瑞, 钟炜, 罗永平, 欧惠. 碳纳米管和二甲基亚砜对钙钛矿太阳电池中PEDOT:PSS空穴传输层的协同影响[J]. 无机材料学报, 2018, 33(6): 641-647. |
[3] | 范 平, 古 迪, 梁广兴, 罗景庭, 张东平, 陈聚龙. 单源热蒸发制备有机无机杂化CH3NH3PbI3薄膜及其性能表征[J]. 无机材料学报, 2015, 30(10): 1105-1109. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||