无机材料学报 ›› 2021, Vol. 36 ›› Issue (5): 451-460.DOI: 10.15541/jim20200465
所属专题: 电致变色材料与器件; 【虚拟专辑】电致变色与热致变色材料; 电致变色专栏2021
• 专栏:电致变色材料与器件(特邀编辑:王金敏,刁训刚) • 上一篇 下一篇
张翔1, 李文杰2(), 王乐滨1, 陈曦1, 赵九蓬2, 李垚1()
收稿日期:
2020-08-14
修回日期:
2020-09-22
出版日期:
2021-05-20
网络出版日期:
2021-04-19
通讯作者:
李 垚, 教授. E-mail: yaoli@hit.edu.cn
作者简介:
张 翔(1986-), 男, 讲师. E-mail:zhangxhit@hit.edu.cn
基金资助:
ZHANG Xiang1, LI Wenjie2(), WANG Lebin1, CHEN Xi1, ZHAO Jiupeng2, LI Yao1()
Received:
2020-08-14
Revised:
2020-09-22
Published:
2021-05-20
Online:
2021-04-19
Contact:
LI Yao, professor.E-mail: yaoli@hit.edu.cn
About author:
ZHANG Xiang(1986-), male, lecturer. E-mail:zhangxhit@hit.edu.cn
Supported by:
摘要:
电致变色材料是一种在外加电场下, 颜色可以发生可逆转变的材料。电致变色材料可调的光谱范围广, 可以实现从可见到中远红外的宽波段调控, 在智能窗、显示、防炫目后视镜、智能热控和伪装等领域具有广泛应用前景。目前对无机电致变色材料的研究大多是关于透过特性的研究, 对于反射特性的研究较少, 这主要是因为无机变色材料大多颜色单一, 且不如有机变色材料容易设计。近年来, 通过一些特殊的制备方法和结构设计, 无机变色材料反射特性的研究逐渐受到科研人员的重视。本文从无机电致变色材料的反射特性出发, 详细介绍了无机电致变色在可见-近红外到中远红外波段的反射光谱调控方法和原理, 综述了最新研究进展。在可见波段, 反射特性调控主要通过制备五氧化二钒及其掺杂化合物、一维光子晶体微结构、法布里-珀罗纳米谐振腔结构和局域表面等离子共振等方式实现。在红外波段, 主要利用氧化钨等材料的分子振动吸收和德鲁德自由电子气体理论等理论设计制备红外反射型电致变色器件。最后, 对未来无机电致变色材料反射调节的实际应用进行了展望。
中图分类号:
张翔, 李文杰, 王乐滨, 陈曦, 赵九蓬, 李垚. 无机电致变色材料反射特性研究进展[J]. 无机材料学报, 2021, 36(5): 451-460.
ZHANG Xiang, LI Wenjie, WANG Lebin, CHEN Xi, ZHAO Jiupeng, LI Yao. Reflective Property of Inorganic Electrochromic Materials[J]. Journal of Inorganic Materials, 2021, 36(5): 451-460.
图1 珊瑚状V2O5纳米棒结构SEM照片(a),珊瑚状V2O5薄膜颜色对比(b), SnO2/V2O5薄膜的SEM照片(c), SnO2/V2O5薄膜在不同工作状态下的颜色参数(Lab颜色模式)和光学照片(d), ITO/WO3/Ta2O5/Li/V2O5/ITO 器件的横截面SEM照片(e), 褪色和着色状态下的器件实物照片(f), Zn-SVO电致变色显示器件示意图(g), 以及Zn-SVO显示器件在不同电压下的数码照片(h)[17,18,19,20]
Fig. 1 Top-view SEM images of coralline V2O5 nanorod architecture (a), digital photos of coralline V2O5 architecture under different voltages (b), SEM images of SnO2/V2O5 films (c), color parameters (Lab color mode) and optical images of SnO2/V2O5 films at different working states (d), cross-sectional SEM image of the ITO/WO3/Ta2O5/Li/V2O5/ITO ECD (Electrochromic Device) (e), digital photos of the ECD in the bleached and colored state (f), schematic illustration of a large-scale Zn-SVO electrochromic display showing three intrinsic colors (g), and digital photographs of the large-scale Zn-SVO display under different voltage bias conditions (h)[17,18,19,20]
图2 以60°角记录的具有7层周期结构的薄膜(橘红色)在阴极着色(黄色)和阳极着色(绿色)下的实物照片(a), 不同Bragg波长的致密WO3薄膜和4周期双层电致变色分布Bragg反射器的电致变色特性(b) (λB=450, 550, 650 nm)[22,23]
Fig. 2 Color effects recorded at a 60° angle for cathodic coloration (yellow stack) and anodic coloration (green stack) of an orange-red 7 double-layer nanoparticle NiO/WO3 stack (a), and electrochromic properties of dense WO3 film and 4-bilayer electrochromic distributed Bragg reflectors with various Bragg wavelength (b) (λB=450, 550, 650 nm)[22,23]
图4 双电极电致变色电池的结构和照片(a), 在着色(5~30 s)和褪色过程(1~3 s)期间的照片和光谱(b)[25,26,27]
Fig. 4 Scheme and photographs of the two-electrode electrochromic cell (a), digital images of the film during coloration (5-30 s) and bleaching process (1-3 s) (b)[25,26,27]
图7 器件结构示意图(a, b)和不同结晶性的氧化钨的红外反射谱(c~e)[42]
Fig. 7 Schematic diagrams of ECD structures (a, b) and infrared reflectance spectra with different crystalline WO3 (c-e)[42]
图9 石墨烯器件结构示意图(a), 石墨烯器件工作原理示意图(b), 0和3 V电压下的热相机图像(c, d)[44]
Fig. 9 Schematic drawing of graphene device (a), schematic representation of working principle of the graphene device (b), thermal camera images of device under the voltage bias of 0 and 3 V, respectively (c, d)[44]
图10 LTO晶体结构(a), LTO反射光谱(b)和LTO器件红外调控实物图(c)[45]
Fig. 10 Crystal structures of Li4Ti5O12 and Li7Ti5O12 (a), visible-to-infrared spectral reflectance (b), photograph (top) and thermograph (bottom) in the two states (c)[45]
[1] | DEB S. A novel electrophotographic system. Applied Optics, 1969,8(101):192-195. |
[2] | ZHANG X, LI W J, LI Y, et al. Research progress of inorganic all-solid-state electrochromic devices. Materials Science and Technology, 2020,28:140-149. |
[3] |
CHEN X, DOU S L, LI W J, et al. All solid state electrochromic devices based on the LiF electrolyte. Chemical Communications, 2020,56:5018-5021.
URL PMID |
[4] | LI W J, ZHANG X, CHEN X, et al. Effect of independently controllable electrolyte ion content on the performance of all-solid-state electrochromic devices. Chemical Engineering Journal, 2020,398:125628. |
[5] | GREER B. Control System for Electrochromic Devices. U.S. Patent 7277215. 2007-10-2. |
[6] | WANG Z, PRADHAN A, ROZBICKI R. Electrochromic Devices. U.S. Patent 8764951. 2014-7-1. |
[7] | XU Q F, LI J, ZHAO J. A Kind of Electrochromic Glass. China, CN204595399U. 2015-8-26. |
[8] | ZHAO Y M, ZHANG X, CHEN X, et al. Preparation of WO3 films with controllable crystallinity for improved near-Infrared electrochromic performances. ACS Sustainable Chemistry & Engineering, 2020,8(31):11658-11666. |
[9] | XIA X H, TU J P, ZHANG J, et al. Morphology effect on the electrochromic and electrochemical performances of NiO thin films. Electrochimica Acta, 2008,53(18):5721-5724. |
[10] | LI W J, ZHANG X, CHEN X, et al. Lithiation of WO3 films by evaporation method for all-solid-state electrochromic devices Electrochimica Acta, 2020,355:136817. |
[11] | ZHOU D, XIE D, XIA X H, et al. All-solid-state electrochromic devices based on WO3||NiO films: material developments and future applications Science China Chemistry, 2017,60(1):3-12. |
[12] |
SHENG M F, ZHANG L P, WEST L J, et al. Multicolor electrochromic dye-doped liquid crystal yolk-shell microcapsules. ACS Applied Materials & Interfaces, 2020,12(26):29728-29736
DOI URL PMID |
[13] |
MORTIMER R J, DYER A L, REYNOLDS J R. Electrochromic organic and polymeric materials for display applications. Displays, 2006,27:2-18.
DOI URL |
[14] | YU H T, SHAO S, YAN L J, et al. Side-chain engineering of green color electrochromic polymer materials: toward adaptive camouflage application. Journal of Materials Chemistry C, 2016,4:2269-2273. |
[15] | CHANDRASEKHAR P, ZAY B J, BIRUR G C, et al. Large, switchable electrochromism in the visible through far-infrared in conducting polymer devices. Advanced Functional Materials, 2002,12(2):95-103. |
[16] | CHERNOVA N A, ROPPOLO M, DILLON A C, et al. Layered vanadium and molybdenum oxides: batteries and electrochromics. Journal of Materials Chemistry, 2009,19:2526-2552. |
[17] | TONG Z Q, LI N, LV H M, et al. Annealing synthesis of coralline V2O5 nanorod architecture for multicolor energy-efficient electrochromic device. Solar Energy Materials and Solar Cells, 2016,146:135-143. |
[18] | ZHAO G F, WANG W Q, WANG X L, et al. A multicolor electrochromic film based on a SnO2/V2O5 core/shell structure for adaptive camouflage. Journal of Materials Chemistry C, 2019,7:5702-5709. |
[19] |
ZHANG X, LI W J, CHEN X, et al. Inorganic all-solid-state electrochromic devices with reversible color change between yellow-green and emerald green. Chemical Communications, 2020,56:10062-10065.
URL PMID |
[20] | ZHANG W, LI H Z, YU W W, et al. Transparent inorganic multicolour displays enabled by zinc-based electrochromic devices. Light: Science & Applications, 2020,9(1):121. |
[21] |
BLANCO A, CHOMSKI E, GRABTCHAK S, et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature, 2000,405(6785):437-440.
DOI URL PMID |
[22] | REDEL E, MLYNARSKI J, MOIR J, et al. Electrochromic Bragg mirror: ECBM. Advanced Materials, 2012,24(35):265-269. |
[23] | XIAO L L, LV Y, LIN J, et al. WO3-based electrochromic distributed Bragg reflector: toward electrically tunable microcavity luminescent device. Advanced Optical Materials, 2018,6(1):1-8. |
[24] |
WANG Z, WANG X Y, CONG S, et al. Towards full-colourtunability of inorganic electrochromic devices using ultracompact Fabry-Perot nanocavities. Nature Communications, 2020,11(1):1-9.
URL PMID |
[25] | ARAKI S, NAKAMURA K, KOBAYASHI K, et al. Electrochemical optical-modulation device with reversible transformation between transparent, mirror, and black. Advanced Materials, 2012,24(23):122-126. |
[26] |
TSUBOI A, NAKAMURA K, KOBAYASHI N, et al. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Advanced Materials, 2013,25(23):3197-3201
URL PMID |
[27] | LI N, WEI P, YU L, et al. Dynamically switchable multicolor electrochromic films. Small, 2019,15(7):1-7. |
[28] | SWANSON T D, BIRUR G C. NASA thermal control technologies for robotic spacecraft. Applied Thermal Engineering, 2003,23(9):1055-1065. |
[29] | LI H, XIE K, PAN Y, et al. Variable emissivity infrared electrochromic device based on polyaniline conducting polymer. Synthetic Metals, 2009,159(13):1386-1388. |
[30] | LOUET C, CANTIN S, DUDON J P, et al. A comprehensive study of infrared reflectivity of poly (3, 4-ethylenedioxythiophene) model layers with different morphologies and conductivities. Solar Energy Materials and Solar Cells, 2015,143:141-151. |
[31] | ZHANG L P, WANG B, LI X B, et al. Further understanding of the mechanisms of electrochromic devices with variable infrared emissivity based on polyaniline conducting polymers. Journal of Materials Chemistry C, 2019,7(32):9878-9891. |
[32] | MODINE F A, SMITH D Y. Approximate formulas for the amplitude and the phase of the infrared reflectance of a conductor. Journal of The Optical Society of America A-Optics Image Science and Vision, 1984,1(12):1171-1174. |
[33] | HALE J S, WOOLLAM J A. Prospects for IR emissivity control using electrochromic structures. Thin Solid Films, 1999,339(1):174-180. |
[34] | FRANKE E B, TRIMBLE C L, SCHUBERT M, et al. All-solid-state electrochromic reflectance device for emittance modulation in the far-infrared spectral region. Applied Physics Letters, 2000,77(7):930-932. |
[35] | BESSIERE A, MARCEL C, MORCRETTE M, et al. Flexible electrochromic reflectance device based on tungsten oxide for infrared emissivity control. Journal of Applied Physics, 2002,91(3):1589-1594. |
[36] | SAUVET K, SAUQUES L, ROUGIER A, et al. IR electrochromic WO3 thin films: from optimization to devices. Solar Energy Mater. Solar Cells, 2009,93:2045-2049. |
[37] | SAUVET K, SAUQUES L, ROUGIER A, et al. Electrochromic properties of WO3 as a single layer and in a full device: from the visible to the infrared. Journal of Physics and Chemistry of Solids, 2010,71:696-699. |
[38] | KISLOV N, GROGER H, PONNAPPAN R. All-solid-state electrochromic variable emittance coatings for thermal management in space. AIP Conference Proceedings, 2003,654(1):172-179. |
[39] | KISLOV N, GROGER H, PONNAPPAN R, et al. Electrochromic variable emittance devices on silicon wafer for spacecraft thermal control. AIP Conference Proceedings, 2004,699(1):112-118. |
[40] | DEMIRYONT H, MOOREHEAD D. Electrochromic emissivity modulator for spacecraft thermal management. Solar Energy Materials and Solar Cells, 2009,93(12):2075-2078. |
[41] | HUANG Y S, ZHANG Y Z, ZENG X T, et al. Study on Raman spectra of electrochromic c-WO3 films and their infrared emittance modulation characteristics Applied Surface Science, 2002,202(1):104-109. |
[42] | LARSSON A L, NIKLASSON G A. Infrared emittance modulation of all-thin-film electrochromic devices. Materials Letters, 2004,58(20):2517-2520. |
[43] | ZHANG X, TIAN Y L, LI W J, et al. Preparation and performances of all-solid-state variable infrared emittance devices based on amorphous and crystalline WO3 electrochromic thin films Solar Energy Materials and Solar Cells, 2019,200:109916. |
[44] |
SALIHOGLU O, UZLU H B, YAKAR O, et al. Graphene-based adaptive thermal camouflage. Nano Letters, 2018,18(7):4541-4548.
DOI URL PMID |
[45] | MANDAL J, DU S, DONTIGNY M, et al. Li4Ti5O12: a visible-to-infrared broadband electrochromic material for optical and thermal management. Advanced Functional Materials, 2018,28(36):1-8. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||