无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 665-672.DOI: 10.15541/jim20200356
所属专题: 【能源环境】光催化降解有机分子; 【能源环境】水体污染物去除
• 研究快报 • 上一篇
收稿日期:
2020-06-29
修回日期:
2020-08-13
出版日期:
2021-06-20
网络出版日期:
2020-10-10
通讯作者:
熊 娟, 副教授. E-mail: juanxiong@hubu.edu.cn
作者简介:
蔡 苗(1996-), 男, 硕士研究生. E-mail: zhangsan@mail.sic.ac.cn
CAI Miao(), CHEN Zihang, ZENG Shi, DU Jianghui, XIONG Juan()
Received:
2020-06-29
Revised:
2020-08-13
Published:
2021-06-20
Online:
2020-10-10
Contact:
XIONG Juan, associated professor. E-mail: juanxiong@hubu.edu.cn
About author:
CAI Miao(1996-), male, Master candidate. E-mail: zhangsan@mail.sic.ac.cn
Supported by:
摘要:
光催化技术以其高效、安全、低成本的优势, 被广泛研究用于去除污水中有毒副作用的重金属Cr(VI)。制备半导体复合材料是一种可以有效提高半导体光催化性能的途径。本研究通过简单的水热法合成了CuS纳米片修饰的Bi5O7I复合材料, 并且表征和评估了其在可见光下对Cr(VI)的光催化还原活性。与纯Bi5O7I微米棒及纯CuS样品相比, CuS/Bi5O7I复合催化剂对Cr(VI)水溶液具有更高的光催化降解活性。在相同的可见光辐照条件下, 15wt% CuS修饰的复合样品, 光催化降解Cr(VI)的反应常数是纯/Bi5O7I样品的20倍, 纯CuS样品的4.3倍。对比样品的比表面积、光致发光谱和电化学阻抗谱的测试结果发现, 复合样品表现出更高的催化效率是由于CuS/Bi5O7I具有更大的比表面积、更宽的光吸收区域及更高的光生电子-空穴对的分离和传输效率。本研究还提出了CuS/Bi5O7I复合材料光催化降解Cr(VI)的机理。
中图分类号:
蔡苗, 陈子航, 曾实, 杜江慧, 熊娟. CuS纳米片修饰Bi5O7I复合材料用于光催化还原Cr(VI)水溶液[J]. 无机材料学报, 2021, 36(6): 665-672.
CAI Miao, CHEN Zihang, ZENG Shi, DU Jianghui, XIONG Juan. CuS Nanosheet Decorated Bi5O7I Composite for the Enhanced Photocatalytic Reduction Activity of Aqueous Cr(VI)[J]. Journal of Inorganic Materials, 2021, 36(6): 665-672.
Fig. 5 (a) UV-Vis diffuse reflectance spectra of Bi5O7I, CuS and CuS/Bi5O7I composites, (b) plots of (αhv)1/2 vs hv of Bi5O7I and CuS, CuS/Bi5O7I composites and (c) N2 adsorption and desorption isotherms for pure Bi5O7I and CB-15 composite
Fig. 7 (a) Photocatalytic efficiency, (b) corresponding kinetic curves for the photocatalytic reduction of aqueous Cr(VI) with Bi5O7I and CuS/Bi5O7I composites (experimental conditions: 150 mL of 10 mg/L Cr(IV) solution, 100 mg of catalyst)
[1] | ZHU K R, GAO Y, TAN X, et al. Polyaniline modified Mg/Al layered double hydroxide composites and their application in efficient removal of Cr(VI). ACS Sustainable Chemistry & Engineering, 2016,4:4361-4369. |
[2] |
ZHANG S, LI B F, WANG X X, et al. Recent developments of two-dimensional graphene-based composites in visible-light photocatalysis for eliminating persistent organic pollutants from wastewater. Chemical Engineering Journal, 2020,390:124642.
DOI URL |
[3] |
ZHU K R, CHEN C L, LU S H, et al. MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped graphene-CNT frameworks as a recyclable catalyst for Cr(VI) reduction with formic acid. Carbon, 2019,148:52-63.
DOI URL |
[4] |
HU C Y, LEI E, HU K K, et al. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity. Journal of Materials Science, 2020,55(1):151-162.
DOI URL |
[5] |
ZHAO G X, SUN Y B, ZHAO Y K, et al. Enhanced photocatalytic simultaneous removals of Cr(VI) and bisphenol A over Co(II)-modified TiO2. Langmuir, 2019,35:276-283.
DOI URL |
[6] |
WANG Q L, DONG R F, WANG C, et al. Glucose-fueled micromotors with highly efficient visible-light photocatalytic propulsion. ACS Applied Materials Interfaces, 2019,11:6201-6207.
DOI URL |
[7] |
CHEN W B, YANG Z F, XIE Z, et al. Benzothiadiazole functionalized D-A type covalent organic frameworks for effective photocatalytic reduction of aqueous chromium (VI). Journal of Materials Chemistry A, 2019,7:998-1004.
DOI URL |
[8] |
ZHANG R, HAN Q, LI Y, et al. Fabrication and characterization of high efficient Z-scheme photocatalyst Bi2MoO6/reduced graphene oxide/BiOBr for the degradation of organic dye and antibiotic under visible-light irradiation. Journal of Materials Science, 2019,54:14157-14170.
DOI URL |
[9] |
YANG Q, LUO M L, LIU K W, et al. A composite of single-crystalline Bi2WO6 and polycrystalline BiOCl with a high percentage of exposed (001) facets for highly efficient photocatalytic degradation of organic pollutants. Chemical Communications, 2019,55:5728-5731.
DOI URL |
[10] |
SULTANA S, MANSINGH S, PARIDA K. Facile synthesis of CeO2 nanosheets decorated upon BiOI microplate: a surface oxygen vacancy promoted Z-scheme-based 2D-2D nanocomposite photocatalyst with enhanced photocatalytic activity. The Journal of Physical Chemistry C, 2017,122:808-819.
DOI URL |
[11] |
GENG X Q, CHEN S, LÜ X, et al. Synthesis of g-C3N4/Bi5O7I microspheres with enhanced photocatalytic activity under visible light. Applied Surface Science, 2018,462:18-28.
DOI URL |
[12] | WU G J, ZHAO Y, LI Y W, et al. Assembled and isolated Bi5O7I nanowires with good photocatalytic activities. CrystEngComm, 2017,17:2113-2125. |
[13] |
LI B, CHEN X W, ZHANG T Y, et al. Photocatalytic selective hydroxylation of phenol to dihydroxybenzene by BiOI/TiO2 p-n heterojunction photocatalysts for enhanced photocatalytic activity. Applied Surface Science, 2018,439:1047-1056.
DOI URL |
[14] | DONG Z J, PAN J Q, WANG B B, et al. The p-n-type Bi5O7I-modified porous C3N4 nano-heterojunction for enhanced visible light photocatalysis. Journal of Alloys & Compounds, 2018,747:788-795. |
[15] |
CHEN Y N, ZHU G Q, GAO J Z, et al. Three-dimensional Ag2O/Bi5O7I p-n heterojunction photocatalyst harnessing UV-Vis-NIR broad spectrum for photodegradation of organic pollutants. Journal of Hazardous Materials, 2018,344:42-54.
DOI URL |
[16] |
YANG N, X, LÜ X, ZHONG S T, et al. Preparation of Z-scheme AgI/Bi5O7I plate with high visible light photocatalytic performance by phase transition and morphological transformation of BiOI microspheres at room temperature. Dalton Transactions, 2018,47:11420-11428.
DOI URL |
[17] | MA R, ZHANG S, LI L, et al. Enhanced visible-light-induced photoactivity of Type-II CeO2/g-C3N4 nanosheet towards organic pollutants degradation, ACS Sustainable Chemistry & Engineering, 2019,7:9699-9708. |
[18] |
KAMRANIFAR M, ALLAHRESANI A, NAGHIZADEH A. Synthesis and characterizations of a novel CoFe2O4@CuS magnetic nanocomposite and investigation of its efficiency for photocatalytic degradation of penicillin G antibiotic in simulated wastewater. Journal of Hazardous Materials, 2019,366:545-555.
DOI URL |
[19] |
LIM W, WU H, LIM Y, et al. Facilitating the charge transfer of ZnMoS4/CuS p-n heterojunctions through ZnO intercalation for efficient photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2019,6:11416-11423.
DOI URL |
[20] |
DAS K, MAJHI D, BHOI Y, et al. Combustion synthesis, characterization and photocatalytic application of CuS/Bi4Ti3O12 p-n heterojunction materials towards efficient degradation of 2-methyl-4-chlorophenoxyacetic acid herbicide under visible light. Chemical Engineering Journal, 2019,362:588-599.
DOI URL |
[21] |
WU R Y, SONG H B, LUO N, et al. Microwave-assisted preparation and enhanced photocatalytic activity of Bi2WO6/BiOI heterojunction for organic pollutants degradation under visible-light irradiation. Solid State Science, 2019,87:101-109.
DOI URL |
[22] |
HU C C, CHEN T S, HUANG H X. Heterojunction of n-type Sr2TiO4 with p-type Bi5O7I with enhanced photocatalytic activity under irradiation of simulated sunlight. Applied Surface Science, 2017,426:536-544.
DOI URL |
[23] | SUN L X, SUN J H, HAN N, et al. rGO decorated W doped BiVO4 novel material for sensing detection of trimethylamine. Sensors & Actuators B: Chemical, 2019,298:126749. |
[24] | LI Q, DU X J, XIA C Q, et al. Fabrication and photocatalytic properties of nano CuS/MoS2 composite catalyst by dealloying amorphous Ti-Cu-Mo alloy. Applied Surface Science, 2019, 467-468:221-228. |
[25] |
CHAHKANDIA M, ZARGAZI M. Novel method of square wave voltammetry for deposition of Bi2S3 thin film: photocatalytic reduction of hexavalent Cr in single and binary mixtures. Journal of Hazardous Materials, 2019,380:120879.
DOI URL |
[26] |
CHEN K L, ZHU K R, CHEN K, et al. Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). Journal of Colloid and Interface Science, 2018,526:1-8.
DOI URL |
[27] |
ZHANG S, LIU Y, GU P C. Enhanced photodegradation of toxic organic pollutants using dual-oxygen-doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Applied Catalysis B: Environmental, 2019,248:1-10.
DOI URL |
[28] |
FEI T, YU L M, LIU Z Y, et al. Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2019,557:498-505.
DOI URL |
[29] |
PAN J B, LIU J J, ZUO S L, et al. Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity. Materials Research Bulletin, 2018,103:216-224.
DOI URL |
[1] | 孙炼, 顾全超, 杨雅萍, 王洪磊, 余金山, 周新贵. 二维过渡金属硫属化合物氧还原反应催化剂的研究进展[J]. 无机材料学报, 2022, 37(7): 697-709. |
[2] | 李文博, 黄民松, 李月明, 李驰麟. 双盐镁电池CoS2正极材料的电化学性能研究[J]. 无机材料学报, 2022, 37(2): 173-181. |
[3] | 汤丹蕾, 贾丽华, 赵振龙, 杨瑞, 王欣, 郭祥峰. EDTA辅助合成Co3O4纳米材料及其气敏性能[J]. 无机材料学报, 2020, 35(11): 1214-1222. |
[4] | 李泽晖,谭美娟,郑元昊,骆雨阳,经求是,蒋靖坤,李明杰. 导电金属有机骨架材料在超级电容器中的应用[J]. 无机材料学报, 2020, 35(7): 769-780. |
[5] | 彭章美,赵安婷,付茂芬. Q[6]/CdS-Ag2S复合光催化剂的合成及光催化性质[J]. 无机材料学报, 2020, 35(6): 703-708. |
[6] | 陈钧,马培华,张诚,劳伦·鲁尔曼,吕耀康. 新型多功能无机/有机复合薄膜的制备及电化学性能研究[J]. 无机材料学报, 2020, 35(2): 217-223. |
[7] | 肖剑飞, 乃学瑛, 苟生莲, 叶俊伟, 董亚萍, 李武. 邻苯二甲酸氢钾在制备碱式硫酸镁纳米线过程中的机理研究[J]. 无机材料学报, 2019, 34(11): 1181-1186. |
[8] | 许云青,王海增. EDTA辅助水热法制备不同形貌的氟化镁钠[J]. 无机材料学报, 2019, 34(9): 933-937. |
[9] | 李思汉, 张超, 吴辰亮, 张荷丰, 严新焕. 低负载量Pd/CeO2/γ-Al2O3催化剂用于低温催化氧化VOCs[J]. 无机材料学报, 2019, 34(8): 827-833. |
[10] | 张峰, 张凯立, 周明明, 陈超, 蔡志威, 魏国辉, 姜兴茂, 张诚, 劳伦·鲁尔曼, 吕耀康. 基于纳米银负载氧化石墨烯的新型聚乙烯复合材料[J]. 无机材料学报, 2019, 34(6): 633-640. |
[11] | 邓立儿, 李妍, 巩蕾, 王佳. Ag2S纳米晶的制备及其近红外光热治疗应用[J]. 无机材料学报, 2018, 33(8): 825-831. |
[12] | 王树江, 杨永恒, 温春阳, 张国馗, 苑春晖. 纳米银/伊利石复合材料的制备及其性能研究[J]. 无机材料学报, 2018, 33(5): 570-576. |
[13] | 杨志胜, 柯蔚芳, 王艳香, 黄丽群, 郭平春, 朱 华. 杂化钙钛矿(HOC2H4NH3)2CuCl4的制备与表征[J]. 无机材料学报, 2017, 32(10): 1063-1067. |
[14] | 湛 菁, 陆二聚, 蔡 梦, 马雅琳, 张传福. 棒状多孔NiCo2O4粉末的可控制备及其电催化性能研究[J]. 无机材料学报, 2017, 32(1): 11-17. |
[15] | 赵新红, 高向平, 赵江波, 张晓晓, 郝志鑫. 低量结构导向剂改进离子热法高效合成LTA型磷酸铝分子筛[J]. 无机材料学报, 2016, 31(11): 1212-1218. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||