无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 652-658.DOI: 10.15541/jim20200508
所属专题: 【结构材料】超高温结构陶瓷
孙鲁超1(), 周翠1,2, 杜铁锋1, 吴贞1, 雷一明1,2, 李家麟1, 苏海军3(), 王京阳1()
收稿日期:
2020-09-01
修回日期:
2020-09-29
出版日期:
2021-06-20
网络出版日期:
2020-10-10
通讯作者:
王京阳, 研究员. E-mail: jywang@imr.ac.cn; 苏海军, 教授. E-mail: shjnpu@nwpu.edu.cn
作者简介:
孙鲁超(1984-), 男, 副研究员. E-mail: lcsun@imr.ac.cn
SUN Luchao1(), ZHOU Cui1,2, DU Tiefeng1, WU Zhen1, LEI Yiming1,2, LI Jialin1, SU Haijun3(), WANG Jingyang1()
Received:
2020-09-01
Revised:
2020-09-29
Published:
2021-06-20
Online:
2020-10-10
Contact:
WANG Jingyang, professor. E-mail: jywang@imr.ac.cn; SU Haijun, professor. E-mail: shjnpu@nwpu.edu.cn
About author:
SUN Luchao(1984-), male, associate professor. E-mail: lcsun@imr.ac.cn
Supported by:
摘要:
本研究探索了光悬浮区熔法制备Al2O3/Er3Al5O12(ErAG)和Al2O3/Yb3Al5O12(YbAG) 定向凝固共晶陶瓷。在10 mm/h的抽拉速率下成功获得了凝固组织均匀、内部无裂纹或孔洞的高质量共晶陶瓷。通过高分辨三维X射线衍射仪研究了Al2O3和RE3Al5O12在三维空间的分布与组织结构; 利用电子背散射衍射技术分析了定向凝固末期Al2O3和RE3Al5O12两相的晶体学择优取向和相界面关系。力学性能表征结果显示, Al2O3/ErAG和Al2O3/YbAG具有优异的力学性能, 二者的维氏硬度分别为(13.5±0.4)和(12.8±0.1) GPa;断裂韧性分别为(3.0±0.2)和(3.2±0.1) MPa·m1/2。
中图分类号:
孙鲁超, 周翠, 杜铁锋, 吴贞, 雷一明, 李家麟, 苏海军, 王京阳. 光悬浮区熔定向凝固Al2O3/Er3Al5O12和Al2O3/Yb3Al5O12共晶陶瓷的制备与性能研究[J]. 无机材料学报, 2021, 36(6): 652-658.
SUN Luchao, ZHOU Cui, DU Tiefeng, WU Zhen, LEI Yiming, LI Jialin, SU Haijun, WANG Jingyang. Directionally Solidified Al2O3/Er3Al5O12 and Al2O3/Yb3Al5O12 Eutectic Ceramics Prepared by Optical Floating Zone Melting[J]. Journal of Inorganic Materials, 2021, 36(6): 652-658.
Fig. 5 Pole figures of Al2O3/ErAG: (a) Al2O3 in {0001} orientation and (b) ErAG in {211} orientation corresponding to the inverse pole figures in Fig. 4 (a) and (b)
Eutectic system | Growth method | Growth directions | Orientation relationships |
---|---|---|---|
Al2O3/ErAG | OFZ | <$10\bar{1}0$> Al2O3//<111> ErAG | {0001} Al2O3//{211} ErAG |
Al2O3/REAG | OFZ | <$10\bar{1}0$> Al2O3//<101> REAG | {0001} Al2O3//{211} REAG |
RE=Er/Yb[ | <$10\bar{1}0$> Al2O3//<$2\bar{1}0$> REAG | ||
Al2O3/YAG[ | OFZ | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Al2O3/YAG[ | LFZ | <$1\bar{1}00$> Al2O3//<111> YAG | {0001} Al2O3//{$1\bar{1}2$} YAG |
Al2O3/YAG[ | Bridgman | <$1\bar{1}20$> Al2O3//<110> YAG | - |
<$01\bar{1}0$> Al2O3//<110> YAG | |||
Al2O3/YAG[ | LSP | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Table 1 Growth directions and orientation relationships of some eutectic ceramics
Eutectic system | Growth method | Growth directions | Orientation relationships |
---|---|---|---|
Al2O3/ErAG | OFZ | <$10\bar{1}0$> Al2O3//<111> ErAG | {0001} Al2O3//{211} ErAG |
Al2O3/REAG | OFZ | <$10\bar{1}0$> Al2O3//<101> REAG | {0001} Al2O3//{211} REAG |
RE=Er/Yb[ | <$10\bar{1}0$> Al2O3//<$2\bar{1}0$> REAG | ||
Al2O3/YAG[ | OFZ | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Al2O3/YAG[ | LFZ | <$1\bar{1}00$> Al2O3//<111> YAG | {0001} Al2O3//{$1\bar{1}2$} YAG |
Al2O3/YAG[ | Bridgman | <$1\bar{1}20$> Al2O3//<110> YAG | - |
<$01\bar{1}0$> Al2O3//<110> YAG | |||
Al2O3/YAG[ | LSP | <$10\bar{1}0$> Al2O3//<101> YAG | {0001} Al2O3//{211} YAG |
Fig. 6 3D-XRT images of directionally solidified (a) Al2O3/ErAG and (d) Al2O3/YbAG eutectics, (b, c) spatial distribution of ErAG and Al2O3 in Al2O3/ErAG, (e, f) spatial distribution of YbAG and Al2O3 in Al2O3/YbAG
Eutectic system | Preparation method | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|
Al2O3/ErAG | OFZ | (13.5±0.4) | (3.0 ± 0.2) |
Al2O3/YbAG | OFZ | (12.8±0.1) | (3.2 ± 0.1) |
Al2O3/ErAG[ | LFZ | (14.5-16.0) | 1.9 |
Al2O3/ErAG[ | LFZ | (14.9±0.7) | (1.8 ± 0.3) |
Al2O3/YbAG[ | LFZ | (14.8±0.6) | (2.2 ± 0.5) |
Al2O3/YAG[ | OFZ | 13.5 | (3.1±0.3) |
Table 2 Comparison of Vickers hardness and fracture toughness of some Al2O3/REAG eutectic ceramics
Eutectic system | Preparation method | Vickers hardness /GPa | Fracture toughness /(MPa·m1/2) |
---|---|---|---|
Al2O3/ErAG | OFZ | (13.5±0.4) | (3.0 ± 0.2) |
Al2O3/YbAG | OFZ | (12.8±0.1) | (3.2 ± 0.1) |
Al2O3/ErAG[ | LFZ | (14.5-16.0) | 1.9 |
Al2O3/ErAG[ | LFZ | (14.9±0.7) | (1.8 ± 0.3) |
Al2O3/YbAG[ | LFZ | (14.8±0.6) | (2.2 ± 0.5) |
Al2O3/YAG[ | OFZ | 13.5 | (3.1±0.3) |
[1] |
WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. High temperature strength and thermal stability of a unidirectionally solidified Al2O3/YAG eutectic composite. Journal of Materials Science, 1998,33:1217-1225.
DOI URL |
[2] |
WAKU Y, NAKAGAWA N, WAKAMOTO T, et al. A ductile ceramic eutectic composite with high strength. Nature, 1997,389:49-52.
DOI URL |
[3] |
LLORCA J, ORERA V M. Directionally solidified eutectic oxide ceramics. Progress in Materials Science, 2006,51:711-809.
DOI URL |
[4] |
PASTOR J Y, LLORCA J, SALAZAR A, et al. Mechanical properties of melt-grown alumina-yttrium aluminum garnet eutectics up to 1900 K. Journal of the American Ceramic Society, 2005,88:1488-1495.
DOI URL |
[5] |
OLIETE P B, PENA J I, LARREA A, et al. Ultra-high-strength nanofibrillar Al2O3-YAG-YSZ eutectics. Advanced Materials, 2007,19:2313-2318.
DOI URL |
[6] |
ZHANG J, SU H J, SONG K, et al. Microstructure, growth mechanism and mechanical property of Al2O3-based eutectic ceramic in situ composites. Journal of the European Ceramic Society, 2011,31:1191-1198.
DOI URL |
[7] |
WAKU Y, NAKAGAWA N, OHTSUBO H, et al. Fracture and deformation behaviour of melt growth composites at very high temperatures. Journal of Materials Science, 2001,36:1585-1594.
DOI URL |
[8] |
MARTINEZ FERNANDEZ J, SAYIR A, FARMER S C. High temperature creep deformation of directionally solidified Al2O3/ Er3Al5O12. Acta Materialia, 2003,51:1705-1720.
DOI URL |
[9] |
MESA M C, OLIETE P B, ORERA V M, et al. Microstructure and mechanical properties of Al2O3/Er3Al5O12 eutectic rods grown by the laser-heated floating zone method. Journal of the European Ceramic Society, 2011,31:1241-1250.
DOI URL |
[10] |
MESA M C, OLIETE P B, LARREA A. Microstructural stability at elevated temperatures of directionally solidified Al2O3/Er3Al5O12 eutectic ceramics. Journal of Crystal Growth, 2012,360:119-122.
DOI URL |
[11] |
REN Q, SU H J, ZHANG J, et al. Microstructure control, competitive growth and precipitation rule in faceted Al2O3/Er3Al5O12 eutectic in situ composite ceramics prepared by laser floating zone melting. Journal of the European Ceramic Society, 2019,39:1900-1908.
DOI URL |
[12] |
REN Q, SU H J, ZHANG J, et al. Halo formation in directionally solidified Al2O3-Er3Al5O12 off-eutectic in situ composite ceramics. Materials Characterization, 2019,150:31-37.
DOI URL |
[13] |
REN Q, SU H J, ZHANG J, et al. Eutectic growth behavior with regular arrangement in the faceted Al2O3/Er3Al5O12 irregular eutectic system at low growth rate. Scripta Materialia, 2019,162:49-53.
DOI URL |
[14] |
REN Q, SU H J, ZHANG J, et al. Effect of an abrupt change in pulling rate on microstructures of directionally solidified Al2O3- Er3Al5O12 eutectic and off-eutectic composite ceramics. Ceramics International, 2019,45:6632-6638.
DOI URL |
[15] |
SAI H, YUGAMI H, NAKAMURA K, et al. Selective emission of Al2O3/Er3Al5O12 eutectic composite for thermophotovoltaic generation of electricity. Japanese Journal of Applied Physics, 2000,39:1957-1961.
DOI URL |
[16] | ADACHI Y, YUGAMI H, SHIBATA K, et al. Compact TPV generation system using Al2O3/Er3Al5O12 eutectic ceramics selective emitters. AIP Conference Proceedings, 2004,738:198-205. |
[17] |
NAKAGAWA N, OHTSUBO H, WAKU Y, et al. Thermal emission properties of Al2O3/Er3Al5O12 eutectic ceramics. Journal of the European Ceramic Society, 2005,25:1285-1291.
DOI URL |
[18] |
OLIETE P B, MESA M C, MERINO R I, et al. Directionally solidified Al2O3-Yb3Al5O12 eutectics for selective emitters. Solar Energy Materials and Solar Cells, 2016,144:405-410.
DOI URL |
[19] | OLIETE P B, MANUEL J, ROBLEDO L, et al. Directionally solidified Al2O3-ME3Al5O12( ME: Y, Er and Yb) eutectic coatings for thermophotovoltaic systems. Ceramics International, 2017,43:16270-16275. |
[20] |
LAKIZA S M. Directionally solidified eutectics in the Al2O3-ZrO2- Ln(Y)2O3 systems. Powder Metallurgy and Metal Ceramics, 2009,48:1-2.
DOI URL |
[21] |
YOSHIKAWA A, HASEGAWA K, LEE J H, et al. Phase identification of Al2O3/RE3Al5O12 and Al2O3/REAlO3(RE=Sm-Lu, Y) eutectics. Journal of Crystal Growth, 2000,218:67-73.
DOI URL |
[22] |
ANSTIS G R, CHANTIKUL P, LAWN B R, et al. A critical- evaluation of indentation techniques for measuring fracture- toughness: I, direct crack measurements. Journal of the American Ceramic Society, 1981,64:533-538.
DOI URL |
[23] |
WANG X, WANG J Y, SUN L C, et al. Microstructure evolution of Al2O3/Y3Al5O12 eutectic crystal during directional solidification. Scripta Materialia, 2015,108:31-34.
DOI URL |
[24] |
MAZEROLLES L, PERRIERE L, LARTIGUE-KORINEK S, et al. Microstructures, crystallography of interfaces, and creep behavior of melt-growth composites. Journal of the European Ceramic Society, 2008,28:2301-2308.
DOI URL |
[25] |
WANG X, TIAN Z L, ZHANG W, et al. Mechanical properties of directionally solidified Al2O3/Y3Al5O12 eutectic ceramic prepared by optical floating zone technique. Journal of the European Ceramic Society, 2018,38:3610-3617.
DOI URL |
[26] |
FRAZER C S, DICKEY E C, SAYIR A. Crystallographic texture and orientation variants in Al2O3-Y3Al5O12 directionally solidified eutectic crystals. Journal of Crystal Growth, 2001,233:187-195.
DOI URL |
[27] |
SAKATA S, MITANI A, SHIMIZU K, et al. Crystallographic orientation analysis and high temperature strength of melt growth composite. Journal of the European Ceramic Society, 2005,25:1441-1445.
DOI URL |
[28] |
SU H J, ZHANG J, MA W D, et al. In situ fabrication of highly-dense Al2O3/YAG nanoeutectic composite ceramics by a modified laser surface processing. Journal of the European Ceramic Society, 2014,34:739-744.
DOI URL |
[29] |
WANG X, WANG D, ZHANG H, et al. Mechanism of eutectic growth in directional solidification of an Al2O3/Y3Al5O12 crystal, Scripta Materialia, 2016,116:44-48.
DOI URL |
[1] | 安文然, 黄晶琪, 卢祥荣, 蒋佳宁, 邓龙辉, 曹学强. 热处理温度对LaMgAl11O19涂层热/力学性能的影响[J]. 无机材料学报, 2022, 37(9): 925-932. |
[2] | 张叶, 曾宇平. 自蔓延高温合成氮化硅多孔陶瓷的研究进展[J]. 无机材料学报, 2022, 37(8): 853-864. |
[3] | 夏乾, 孙是昊, 赵义亮, 张翠萍, 茹红强, 王伟, 岳新艳. 碳化硼颗粒级配对硅反应结合碳化硼复合材料结构与性能的影响[J]. 无机材料学报, 2022, 37(6): 636-642. |
[4] | 洪督, 牛亚然, 李红, 钟鑫, 郑学斌. 等离子喷涂TiC-Graphite复合涂层摩擦磨损性能[J]. 无机材料学报, 2022, 37(6): 643-650. |
[5] | 徐谱昊, 张相召, 刘桂武, 张明芬, 桂新易, 乔冠军. Al-Ti合金钎焊SiC陶瓷接头界面微观结构与力学性能[J]. 无机材料学报, 2022, 37(6): 683-690. |
[6] | 丁健翔, 张凯歌, 柳东明, 郑伟, 张培根, 孙正明. Ti3AlC2陶瓷及其衍生物Ti3C2Tx增强的Ag基电接触材料[J]. 无机材料学报, 2022, 37(5): 567-573. |
[7] | 刘海方, 苏海军, 申仲琳, 姜浩, 赵迪, 刘园, 张军, 刘林, 傅恒志. 激光增材制造超高温氧化物共晶陶瓷研究进展[J]. 无机材料学报, 2022, 37(3): 255-266. |
[8] | 蔚海浪, 曹学强, 邓龙辉, 蒋佳宁. LaMeAl11O19/YSZ热障涂层热力学性能和热循环寿命[J]. 无机材料学报, 2022, 37(12): 1259-1266. |
[9] | 孙扬善, 杨治华, 蔡德龙, 张正义, 柳琪, 房树清, 冯良, 石丽芬, 王友乐, 贾德昌. 粉末烧结法制备α-堇青石基玻璃陶瓷的析晶动力学和性能[J]. 无机材料学报, 2022, 37(12): 1351-1357. |
[10] | 吴西士, 朱云洲, 黄庆, 黄政仁. 树脂基多孔碳孔结构对Cf/SiC复合材料连接性能的影响[J]. 无机材料学报, 2022, 37(12): 1275-1280. |
[11] | 王皓轩, 刘巧沐, 王一光. 高熵过渡金属碳化物陶瓷的研究进展[J]. 无机材料学报, 2021, 36(4): 355-364. |
[12] | 吕莎莎, 祖宇飞, 陈国清, 赵伯俊, 付雪松, 周文龙. 陶瓷颗粒增强Cr0.5MoNbWTi难熔高熵合金复合材料的制备及其力学性能[J]. 无机材料学报, 2021, 36(4): 386-392. |
[13] | 金敏, 白旭东, 赵素, 张如林, 陈玉奇, 周丽娜. 坩埚下降法生长SnSe单晶及其力学性能研究[J]. 无机材料学报, 2021, 36(3): 313-318. |
[14] | 李陇彬, 薛玉冬, 胡建宝, 杨金山, 张翔宇, 董绍明. 碳化硅纳米线增韧碳化硅纤维/碳化硅基体损伤行为研究[J]. 无机材料学报, 2021, 36(10): 1111-1117. |
[15] | 马登浩, 侯振华, 李军平, 孙新, 金恩泽, 尹健. 界面相对3D-SiC/SiC复合材料静态力学性能及内耗特征的影响[J]. 无机材料学报, 2021, 36(1): 55-60. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||