[1] |
DYER P N, RICHARDS R E, RUSSEK S L, et al. Ion transport membrane technology for oxygen separation and syngas production. Solid State Ionics, 2000,134(1/2):21-33.
|
[2] |
TONZIELLO J, VELLINI M. Oxygen production technologies for IGCC power plants with CO2 capture. Energy Procedia, 2011,4:637-644.
|
[3] |
ZENG Q, ZUO Y B, FAN C G, et al. CO2-tolerant oxygen separation membranes targeting CO2 capture application. Journal of Membrane Science, 2009,335(1/2):140-144.
|
[4] |
MENG Y Q, HE W, LI X X, et al. Asymmetric La0.6Sr0.4Co0.2Fe0.8O3-δ membrane with reduced concentration polarization prepared by phase-inversion tape casting and warm pressing. Journal of Membrane Science, 2017,533:11-18.
|
[5] |
SHAO Z P, YANG W S, CONG Y, et al. Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Fe0.2O3-δ oxygen membrane. Journal of Membrane Science, 2000,172(1/2):177-188.
|
[6] |
YI J X, SCHROEDER M, WEIRICH T, et al. Behavior of Ba(Co, Fe, Nb)O3-δ perovskite in CO2-containing atmospheres: degradation mechanism and materials design. Chemistry of Materials, 2010,22(23):6246-6253.
|
[7] |
LIU J J, LIU T, WANG W D, et al. Zr0.84Y0.16O1.92- La0.8Sr0.2Cr0.5Fe0.5O3-δ dual-phase composite hollow fiber membrane targeting chemical reactor applications. Journal of Membrane Science, 2012,389:435-440.
|
[8] |
KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al. Oxygen transport in Ce0.8Gd0.2O2-δ-based composite membranes. Solid State Ionics, 2003,160(3/4):247-258.
|
[9] |
KHARTON V V, KOVALEVSKY A V, VISKUP A P, et al. Oxygen permeability of Ce0.8Gd0.2O2-δ-La0.7Sr0.3MnO3-δ composite membranes. Journal of The Electrochemical Society, 2000,147(7):2814-2821.
DOI
URL
|
[10] |
HONG L, CHEN X F, CAO Z D. Preparation of a perovskite La0.2Sr0.8CoO3-x membrane on a porous MgO substrate. Journal of the European Ceramic Society, 2001,21(12):2207-2215.
|
[11] |
IKEGUCHI M, ISHII K, SEKINE Y, et al. Improving oxygen permeability in SrFeCo0.5Ox asymmetric membranes by modifying support-layer porous structure. Materials Letters, 2005,59(11):1356-1360.
DOI
URL
|
[12] |
BÜCHLER O, SERRA J M, MEULENBERG W A, et al. Preparation and properties of thin La1-xSrxCo1-yFeyO3-δ perovskitic membranes supported on tailored ceramic substrates. Solid State Ionics, 2017,178(1/2):91-99.
DOI
URL
|
[13] |
CHANG X F, ZHANG C, JIN W Q, et al. Match of thermal performances between the membrane and the support for supported dense mixed-conducting membranes. Journal of Membrane Science, 2006,285(1):232-238.
DOI
URL
|
[14] |
FANG W, STEINBACH F, CAO Z W, et al. A highly efficient sandwich-like symmetrical dual-phase oxygen-transporting membrane reactor for hydrogen production by water splitting. Angewandte Chemie International Edition, 2016,55(30):8648-8651.
URL
PMID
|
[15] |
LIN Q Y, LIN J, LIU T, et al. Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst-decorated surfaces. Solid State Ionics, 2018,323:130-135.
DOI
URL
|
[16] |
CHENG J G, ZHA S W, HUANG J, et al. Sintering behavior and electrical conductivity of Ce0.9Gd0.1O1.95 powder prepared by the gel-casting process. Materials Chemistry and Physics, 2003,78(3):791-795.
DOI
URL
|
[17] |
STEELE B C H. Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 ℃. Solid State Ionics, 2000,129(1-4):95-110.
DOI
URL
|
[18] |
LUO H X, EFIMOV K, JIANG H Q, et al. CO2-stable and cobalt-free dual-phase membrane for oxygen separation. Angewandte Chemie International Edition, 2011,50(3):759-763.
URL
PMID
|