无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 561-569.DOI: 10.15541/jim20200347
• 综述 • 下一篇
收稿日期:
2020-06-24
修回日期:
2020-07-24
出版日期:
2021-06-20
网络出版日期:
2020-09-09
通讯作者:
杨建平, 教授. E-mail:jianpingyang@dhu.edu.cn
作者简介:
苏 莉(1988-), 女, 博士研究生. E-mail: 1169143@mail.dhu.edu.cn
基金资助:
SU Li(), YANG Jianping(), LAN Yue, WANG Lianjun, JIANG Wan
Received:
2020-06-24
Revised:
2020-07-24
Published:
2021-06-20
Online:
2020-09-09
Contact:
YANG Jianping, professor. E-mail: jianpingyang@dhu.edu.cn
About author:
SU Li(1988-), female, PhD candidate. E-mail: 1169143@mail.dhu.edu.cn
Supported by:
摘要:
近年来, 纳米铁颗粒(纳米零价铁)因其优异的催化/还原性能, 并且价廉、环境友好, 已成为主要的环境修复材料之一。目前, 纳米铁颗粒主要用于水体修复, 如: 重金属离子去除、有机物污染物降解和无机阴离子催化还原等。纳米铁颗粒易团聚和结构单一等问题会导致其活性低、稳定性差和去除种类单一。为了克服上述问题, 迫切需要研究纳米铁颗粒的界面设计。本文重点阐述纳米铁颗粒及其复合材料的可控制备、界面设计、在重金属去除和硝酸根去除转化中的应用以及在环境修复中的未来发展方向。
中图分类号:
苏莉, 杨建平, 兰悦, 王连军, 江莞. 纳米铁颗粒及其复合材料的界面设计及环境修复应用[J]. 无机材料学报, 2021, 36(6): 561-569.
SU Li, YANG Jianping, LAN Yue, WANG Lianjun, JIANG Wan. Interface Design of Iron Nanoparticles for Environmental Remediation[J]. Journal of Inorganic Materials, 2021, 36(6): 561-569.
[1] |
LOWRY G V, JOHNSON K M. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environmental Science & Technology, 2004,38(19):5208-5216.
DOI URL |
[2] |
WANG C B, ZHANG W X. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environmental Science & Technology, 1997,31(7):2154-2156.
DOI URL |
[3] |
LI X Q, ZHANG W X. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir, 2006,22(10):4638-4642.
DOI URL |
[4] |
TENG W, BAI N, ZHANG W X, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environmental Science & Technology, 2018,52(1):230-236.
DOI URL |
[5] |
PONDER S M, DARAB J G, MALLOUK T E. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environmental Science & Technology, 2000,34(12):2564-2569.
DOI URL |
[6] |
FU F, DIONYSIOU D D, LIU H. The use of zero-valent iron for groundwater remediation and wastewater treatment: a review. Journal of Hazardous Materials, 2014,267:194-205.
DOI URL |
[7] |
PHENRAT T, SALEH N, LOWRY G V, et al. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science & Technology, 2007,41(1):284-290.
DOI URL |
[8] |
YANG Z, QIAN J, PAN B C, et al. Singlet oxygen mediated iron-based Fenton-like catalysis under nanoconfinement. Proceedings of the National Academy of Sciences, 2019,116(14):6659-6664.
DOI URL |
[9] |
QIN H, GUAN X, TRATNYEK P G. Effects of sulfidation and nitrate on the reduction of N-Nitrosodimethylamine by zerovalent iron. Environmental Science & Technology, 2019,53(16):9744-9754.
DOI URL |
[10] |
TOSCO T, CRUZ V C, SETHI R, et al. Nanoscale zerovalent iron particles for groundwater remediation: a review. Journal of Cleaner Production, 2014,77:10-21.
DOI URL |
[11] |
HUA Y, WANG W, ZHANG W X, et al. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal. Chemosphere, 2018,201:603-611.
DOI URL |
[12] |
GRIEGER K D, BJERG P L, BAUN A, et al. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? Journal of Contaminant Hydrology, 2010,118(3):165-183.
DOI URL |
[13] |
ZHU F, LI L, LIU T, et al. Effect of pH, temperature, humic acid and coexisting anions on reduction of Cr(Ⅵ)in the soil leachate by nZVI/Ni bimetal material. Environmental Pollution, 2017,227:444-450.
DOI URL |
[14] |
HUANG W, LI W X. Surface and interface design for heterogeneous catalysis. Physical Chemistry Chemical Physics, 2019,21(2):523-536.
DOI URL |
[15] | CHU K, WANG F, ZHANG H, et al. Interface design of graphene/ copper composites by matrix alloying with titanium. Materials & Design, 2018,144:290-303. |
[16] |
CHEN P C, LIU M, MIRKIN C A, et al. Interface and heterostructure design in polyelemental nanoparticles. Science, 2019,363(6430):959.
DOI URL |
[17] |
YANG Z, LIU J, WANG F, et al. Rational design of covalent interfaces for graphene/elastomer nanocomposites. Composites Science and Technology, 2016,132:68-75.
DOI URL |
[18] |
CHANG W S, LIU H J, CHU Y H, et al. Tuning electronic transport in a self-assembled nanocomposite. ACS Nano, 2014,8(6):6242-6249.
DOI URL |
[19] |
ESPINO P E, BRAS J, DOMENEK S, et al. Designed cellulose nanocrystal surface properties for improving barrier properties in polylactide nanocomposites. Carbohydrate Polymers, 2018,183:267-277.
DOI URL |
[20] |
PENG J, CHENG Q. High-performance nanocomposites inspired by nature. Advanced Materials, 2017,29(45):1702959.
DOI URL |
[21] |
HUANG J, TANG Z, GUO B, et al. Bioinspired interface engineering in elastomer/graphene composites by constructing sacrificial metal- ligand bonds. Macromolecular Rapid Communications, 2016,37(13):1040-1045.
DOI URL |
[22] |
SANCHEZ C, RIBOT F, LEBEAU B. Molecular design of hybrid organic-inorganic nanocomposites synthesized via Sol-Gel chemistry. Journal of Materials Chemistry, 1999,9(1):35-44.
DOI URL |
[23] |
ZHANG Y, GONG S, CHENG Q, et al. Graphene-based artificial nacre nanocomposites. Chemical Society Reviews, 2016,45(9):2378-2395.
DOI URL |
[24] |
NALDONI A, PSARO R, DAL S V, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. Journal of the American Chemical Society, 2012,134(18):7600-7603.
DOI URL |
[25] |
TANG J, LIU J, IMURA M, et al. Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. Journal of the American Chemical Society, 2015,137(4):1572-1580.
DOI URL |
[26] |
XU Z C, HOU Y L, SUN S H. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. Journal of the American Chemical Society, 2007,129(28):8698-8699.
DOI URL |
[27] |
TSENG H H, SU J G, LIANG C. Synthesis of granular activated carbon/zero valent iron composites for simultaneous adsorption/ dechlorination of trichloroethylene. Journal of Hazardous Materials, 2011,192(2):500-506.
DOI URL |
[28] |
LI Z, WANG L, MENG J, et al. Zeolite-supported nanoscale zero- valent iron: new findings on simultaneous adsorption of Cd(II), Pb(II), and As(III) in aqueous solution and soil. Journal of Hazardous Materials, 2018,344:1-11.
DOI URL |
[29] |
LUO W, WANG Y, YANG J P, et al. Silicon/mesoporous carbon/ crystalline TiO2 nanoparticles for highly stable lithium storage. ACS Nano, 2016,10(11):10524-10532.
DOI URL |
[30] |
LU W, LI J, CHEN L, et al. One-pot synthesis of magnetic iron oxide nanoparticle-multiwalled carbon nanotube composites for enhanced removal of Cr(VI) from aqueous solution. Journal of Colloid and Interface Science, 2017,505:1134-1146.
DOI URL |
[31] |
YANG J P, ZHANG F, ZHAO D Y, et al. Large pore mesostructured cellular silica foam coated magnetic oxide composites with multilamellar vesicle shells for adsorption. Chemical Communications, 2014,50(6):713-715.
DOI URL |
[32] |
YANG J P, DOU S X, ZHAO D Y, et al. Monodisperse core-shell structured magnetic mesoporous aluminosilicate nanospheres with large dendritic mesochannels. Nano Research, 2015,8(8):2503-2514.
DOI URL |
[33] |
YANG J P, ZHANG F, ZHAO D Y, et al. Mesoporous silica- coated plasmonic nanostructures for surface-enhanced Raman scattering detection and photothermal therapy. Advanced Healthcare Materials, 2014,3(10):1620-1628.
DOI URL |
[34] |
ZHAO D Y, HUO Q, STUCKY G D, et al. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998,120(24):6024-6036.
DOI URL |
[35] |
BECK J S, VARTULI J C, SCHLENKER J L, et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992,114(27):10834-10843.
DOI URL |
[36] |
INAGAKI S, GUAN S, TERASAKI O, et al. Novel mesoporous materials with a uniform distribution of organic groups and inorganic oxide in their frameworks. Journal of the American Chemical Society, 1999,121(41):9611-9614.
DOI URL |
[37] |
LI W, ZHANG F, ZHAO D Y, et al. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core-shell structures. Journal of the American Chemical Society, 2012,134(29):11864-11867.
DOI URL |
[38] |
KAMATA K, LU Y, XIA Y. Synthesis and characterization of monodispersed core-shell spherical colloids with movable cores. Journal of the American Chemical Society, 2003,125(9):2384-2385.
DOI URL |
[39] |
LI W, DENG Y H, ZHAO D Y, et al. Hydrothermal etching assisted crystallization: a facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. Journal of the American Chemical Society, 2011,133(40):15830-15833.
DOI URL |
[40] |
YUE Q, LI J, SU J, et al. Plasmolysis-inspired nanoengineering of functional yolk-shell microspheres with magnetic core and mesoporous silica shell. Journal of the American Chemical Society, 2017,139(43):15486-15493.
DOI URL |
[41] |
SUN H, SHEN X, CHEN H, et al. Measuring the unusually slow ionic diffusion in polyaniline via study of yolk-shell nanostructures. Journal of the American Chemical Society, 2012,134(27):11243-11250.
DOI URL |
[42] |
ANTOLINI E. Carbon supports for low-temperature fuel cell catalysts. Applied Catalysis B: Environmental, 2009,88(1):1-24.
DOI URL |
[43] |
BANG J H, HAN K, SUSLICK K S, et al. Porous carbon supports prepared by ultrasonic spray pyrolysis for direct methanol fuel cell electrodes. The Journal of Physical Chemistry C, 2007,111(29):10959-10964.
DOI URL |
[44] |
SKRABALAK S E, SUSLICK K S. Porous carbon powders prepared by ultrasonic spray pyrolysis. Journal of the American Chemical Society, 2006,128(39):12642-12643.
DOI URL |
[45] | XU H W, ZHANG W X, YANG J P, et al. Bimetallic PdCu nanocrystals immobilized by nitrogen-containing ordered mesoporous carbon for electrocatalytic denitrification. ACS Applied Materials & Interfaces, 2019,11(4):3861-3868. |
[46] |
TENG W, BAI N, ZHANG W X, et al. Selective nitrate reduction to dinitrogen by electrocatalysis on nanoscale iron encapsulated in mesoporous carbon. Environ. Sci. Technol., 2018,52(1):230-236.
DOI URL |
[47] |
WANG Q Q, ZHANG W Z, YANG J P, et al. Porous-carbon- confined formation of monodisperse iron nanoparticle yolks toward versatile nanoreactors for metal extraction. Chemistry-A European Journal 2018, 24(58):15663-15668.
DOI URL |
[48] |
SU L, JIAN W, YANG J P, et al. Site-selective exposure of iron nanoparticles to achieve rapid interface enrichment for heavy metals. Chemical Communications, 2020,56(18):2795-2798.
DOI URL |
[49] |
SU L, JIAN W, YANG J P, et al. Tailoring the assembly of iron nanoparticles in carbon microspheres toward high-performance electrocatalytic denitrification. Nano Letters, 2019,19(8):5423-5430.
DOI URL |
[50] |
HU Y, PENG X, ZHANG L, et al. Liquid nitrogen activation of zero-valent iron and its enhanced Cr(VI) removal performance. Environmental Science & Technology, 2019,53(14):8333-8341.
DOI URL |
[51] |
WANG C, BAER D R, QIANG Y, et al. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Journal of the American Chemical Society, 2009,131(25):8824-8832.
DOI URL |
[52] | LING L, ZHANG W X. Reactions of nanoscale zero-valent iron with Ni(II): three-dimensional tomography of the “Hollow out” effect in a single nanoparticle. Environmental Science & Technology Letters, 2014,1(3):209-213. |
[53] | WU D, PENG S, ZHANG Y, et al. Enhanced As(III) sequestration using sulfide-modified nano-scale zero-valent iron with a characteristic core-shell structure: sulfidation and as distribution. ACS Sustainable Chemistry & Engineering, 2018,6(3):3039-3048. |
[54] |
MEFFRE A, RESPAUD M, CHAUDRET B, et al. Use of long chain amine as a reducing agent for the synthesis of high quality monodisperse iron(0) nanoparticles. Journal of Materials Chemistry, 2011,21(35):13464-13469.
DOI URL |
[55] |
EGEBERG A, BLOCK T, FELDMANN C. Lithiumpyridinyl- driven synthesis of high-purity zero-valent iron nanoparticles and their use in follow-up reactions. Small, 2019,15(37):1902321.
DOI URL |
[56] |
LUO W, LIU H K, YANG J P, et al. Germanium nanograin decoration on carbon shell: boosting lithium-storage properties of silicon nanoparticles. Advanced Functional Materials, 2016,26(43):7800-7806.
DOI URL |
[57] |
SUN Z, YANG J P, ZHAO D Y, et al. A versatile designed synthesis of magnetically separable nano-catalysts with well-defined core-shell nanostructures. Journal of Materials Chemistry A, 2014,2(17):6071-6074.
DOI URL |
[58] |
WANG Q Q, JIANG W, YANG J P, et al. Iron nanoparticles in capsules: derived from mesoporous silica-protected Prussian blue microcubes for efficient selenium removal. Chemical Communications, 2018,54(46):5887-5890.
DOI URL |
[59] |
JIAO J, WANG H, CAO L, et al. In situ confined growth based on a self-templating reduction strategy of highly dispersed Ni nanoparticles in hierarchical yolk-shell Fe@SiO2 structures as efficient catalysts. Chemistry-An Asian Journal, 2016,11(24):3534-3540.
DOI URL |
[60] |
LAN Y, CHEN J L, YANG J P, et al. Fe/Fe3C nanoparticle- decorated N-doped carbon nanofibers for improving the nitrogen selectivity of electrocatalytic nitrate reduction. Journal of Materials Chemistry A, 2020,8(31):15853-15863.
DOI URL |
[61] |
LIANG H W, WEI W, FENG X, et al. Mesoporous metal-nitrogen- doped carbon electrocatalysts for highly efficient oxygen reduction reaction. Journal of the American Chemical Society, 2013,135(43):16002-16005.
DOI URL |
[62] |
XIAO M, ZHU J, XING W, et al. Meso/macroporous nitrogen- doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Advanced Materials, 2015,27(15):2521-2527.
DOI URL |
[63] |
WU Z Y, XU X X, YU S H, et al. Iron carbide nanoparticles encapsulated in mesoporous Fe-N-doped carbon nanofibers for efficient electrocatalysis. Angewandte Chemie-International Edition, 2015,54(28):8179-8183.
DOI URL |
[64] |
LI Z, LI G, LI F, et al. Ionic liquids as precursors for efficient mesoporous iron-nitrogen-doped oxygen reduction electrocatalysts. Angewandte Chemie-International Edition, 2015,54(5):1494-1498.
DOI URL |
[65] |
TENG W, FAN J W, ZHANG W X, et al. Nanoscale zero-valent iron in mesoporous carbon (nZVI@C): stable nanoparticles for metal extraction and catalysis. Journal of Materials Chemistry A, 2017,5(9):4478-4485.
DOI URL |
[66] |
LI J, CHEN C, WANG X, et al. Nanoscale zero-valent iron particles modified on reduced graphene oxides using a plasma technique for Cd(II) removal. Journal of the Taiwan Institute of Chemical Engineers, 2016,59:389-394.
DOI URL |
[67] |
WANG C, LUO H, CHEN S, et al. Removal of As(III) and As(V) from aqueous solutions using nanoscale zero valent iron-reduced graphite oxide modified composites. Journal of Hazardous Materials, 2014,268:124-131.
DOI URL |
[68] |
KANEL S R, MANNING B, CHOI H, et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 2005,39(5):1291-1298.
DOI URL |
[69] |
TANG C, LING L, ZHANG W X. Pb(II) deposition-reduction- growth onto iron nanoparticles induced by graphitic carbon nitride. Chemical Engineering Journal, 2020,387:124088.
DOI URL |
[70] |
CHEN M, WANG H, YANG J P, et al. Achieving high-performance nitrate electrocatalysis with PdCu nanoparticles confined in nitrogen- doped carbon coralline. Nanoscale, 2018,10(40):19023-19030.
DOI URL |
[71] |
DUAN W, LI G, FENG C, et al. Highly active and durable carbon electrocatalyst for nitrate reduction reaction. Water Research, 2019,161:126-135.
DOI URL |
[72] |
WANG J, LING L, ZHANG W X, et al. Nitrogen-doped iron for selective catalytic reduction of nitrate to dinitrogen. Science Bulletin, 2020,65(11):926-933.
DOI URL |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||