无机材料学报 ›› 2021, Vol. 36 ›› Issue (6): 592-600.DOI: 10.15541/jim20200266
所属专题: 【能源环境】金属有机框架材料
收稿日期:
2020-05-15
修回日期:
2020-07-09
出版日期:
2021-06-20
网络出版日期:
2020-08-28
通讯作者:
韩正波, 教授. E-mail: ceshzb@lnu.edu.cn
作者简介:
李婷婷(1980-), 女, 博士. E-mail: litingting2046@163.com
基金资助:
LI Tingting1,2(), ZHANG Zhiming1, HAN Zhengbo2()
Received:
2020-05-15
Revised:
2020-07-09
Published:
2021-06-20
Online:
2020-08-28
Contact:
HAN Zhengbo, professor. E-mail: ceshzb@lnu.edu.cn
About author:
LI Tingting(1980-), female, PhD. E-mail: litingting2046@163.com
Supported by:
摘要:
基于静电纺丝技术的金属有机骨架纳米纤维膜材料(Metal-Organic Frameworks Nanofibrous Membranes, MOFs NFMs)综合了无机多孔材料和聚合物纳米纤维的优势, 是一类具有广阔应用前景的功能性材料。目前已经开发出不同功能的MOFs NFMs, 其应用领域也在不断扩展。本文介绍了MOFs NFMs从制备研究向应用研究的发展历程, 详述了现阶段制备MOFs NFMs的主要方法, 包括混合纺丝法、原位生长法、多步种子生长法和原子层沉积法等; 阐述了目前MOFs NFMs的主要应用领域, 如吸附分离、多相催化、传感检测等; 展望了MOFs NFMs的发展方向和趋势。
中图分类号:
李婷婷, 张志明, 韩正波. 基于静电纺丝技术的聚合物基MOFs纳米纤维膜的研究进展[J]. 无机材料学报, 2021, 36(6): 592-600.
LI Tingting, ZHANG Zhiming, HAN Zhengbo. Research Progress in Polymer-based Metal-organic Framework Nanofibrous Membranes Based on Electrospinning[J]. Journal of Inorganic Materials, 2021, 36(6): 592-600.
图3 (a)ZIF-8/PAN纤维的制备方法和机理[22]; (b)PAN NFM上原位生长UiO-66-NH2示意图[23]; (c)ZIF-8、MIL-88B(Fe)、HKUST-1和MIL-53(Al) NFMs的制备过程[25]
Fig. 3 (a) Preparation method and formation mechanism of the in situ ZIF-8/PAN fibers[22]; (b) Scheme of in situ growth of UiO-66-NH2 on PAN NFM[23]; (c) Fabrication process of ZIF-8, MIL-88B(Fe), HKUST-1 and MIL-53(Al) NFMs[25]
图5 (a)PAN/ZnO/ZIF-8和PAN/Al2O3/MIL-53-NH2的SEM照片[28]; (b)ALD法制备UiO-66-NH2 NFM的示意图[29]
Fig. 5 (a) SEM images of PAN/ZnO/ZIF-8 and PAN/Al2O3/MIL-53-NH2 NFMs[28], and (b) schematic illustration of UiO-66-NH2 NFMs prepared through ALD[29]
图6 以聚多巴胺为成核中心在“惰性”聚合物NFM上沉积MOF[30]
Fig. 6 Effective deposition MOF on the ‘‘inert’’ polymer fibrous membranes by using polydopamine layer as nucleation center[30]
图7 (a)PAN/ZIF-8 NFMs对CO2的吸附等温线和CO2/N2的吸附选择率[33]; (b)Bio-MOF/PAN过滤器对阳离子染料的选择性吸附[37]; (c)ZIF-67/CA NFM对Cu(II)和Cr(VI)的吸附机理示意图[39]
Fig. 7 (a) CO2 adsorption isotherms and CO2/N2 adsorption selectivity of PAN/ZIF-8 NFMs[33], (b) selective adsorption of cationic dyes by bio-MOF/PAN filter[37], and (c) adsorption mechanism of Cu(II) and Cr(VI) on the ZIF-67/CA NFM surface[39]
图8 (a)PLA/ZIF-8@GO NFM光催化降解MB的可能机理[41]; (b)UiO-66-NH2 NFM用于处理有毒工业化学品和化学战剂的示意图[42]
Fig. 8 (a) Possible mechanism of photocatalytic degradation of MB on PLA/ZIF-8@GO fibers[41], and (b) illustration of UiO-66-NH2 NFM used for protection against toxic industrial chemicals and chemical warfare agents[42]
图9 (a)Zn-MOF/PST-1NFM的荧光照片[45]; (b)荧光试纸的可逆性实验[47]
Fig. 9 (a) Fluorescent image of Zn-MOF/PST-1 NFM[45], and (b) reversibility test of the fluorescent test paper with NB and methanol[47]
图10 (a)定向静电纺丝纤维中质子传导示意图和横截面取向纳米纤维的HRTEM照片[55]; (b)CS-PEO和CS-PEO-3% ZIF-8 NFMs对金黄色葡萄球菌的抗菌活性[56]
Fig. 10 (a) Proton conductive process of oriented electrospun nanofiber and HRTEM image of cross-sectional aligned nanofiber[55], and (b) antibacterial activities of CS-PEO and CS-PEO-3% ZIF-8 NFMs[56]
[1] |
KALAJ M, BENTZ K C, AYALA JR S, et al. MOF-polymer hybrid materials: from simple composites to tailored architectures. Chemical Reviews, 2020,120(16):8267-8302.
DOI URL |
[2] |
ZHANG Y, YUN S, FENG X, et al. Preparation of nanofibrous metal-organic framework filters for efficient air pollution control. Journal of the American Chemical Society, 2016,138(18):5785-5788.
DOI URL |
[3] |
ZHAO J, LEE D T, YAGA R W, et al. Ultra-fast degradation of chemical warfare agents using MOF-nanofiber kebabs. Angewandte Chemie International Edition, 2016,55(42):13224-13228.
DOI URL |
[4] | ZHANG Y, GUAN J, WANG X, et al. Balsam-pear-skin-like porous polyacrylonitrile nanofibrous membranes grafted with polyethyleneimine for postcombustion CO2 capture. ACS Applied Materials & Interfaces, 2017,9(46):41087-41098. |
[5] |
WANG C, LIU C, LI J, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors. Chemical Communications, 2017,53(10):1751-1754.
DOI URL |
[6] | ZHANG Y, ZHANG Y, WANG X, et al. Ultrahigh metal-organic framework loading and flexible nanofibrous membranes for efficient CO2 capture with long-term, ultrastable recyclability. ACS Applied Materials & Interfaces, 2018,10(40):34802-34810. |
[7] | GIBSON P, SCHREUDER-GIBSON H, RIVIN D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, 187-188:469-481. |
[8] |
CENTRON A, YANGA Y, SPEAKMAN S, et al. Growth of metal-organic frameworks on polymer surfaces. Journal of the American Chemical Society, 2010,132(44):15687-15691.
DOI URL |
[9] |
OSTERMANN R, CRAVILLON J, WEIDMANN C, et al. Metal- organic framework nanofibers via electrospinning. Chemical Communications, 2011,47(1):442-444.
DOI URL |
[10] |
LAURILA E, THUNBERG J, ARGENT S P, et al. Enhanced synthesis of metal-organic frameworks on the surface of electrospun cellulose nanofibers. Advanced Engineering Materials, 2015,17(9):1282-1286.
DOI URL |
[11] |
ROSE M, BOHRINGER B, JOLLY M, et al. MOF processing by electrospinning for functional textiles. Advanced Engineering Materials, 2011,13(4):356-360.
DOI URL |
[12] |
LIAN Z, HUIMIN L, ZHAOFEI O. In situ crystal growth of zeolitic imidazolate frameworks (ZIF) on electrospun polyurethane nanofibers. Dalton Transactions, 2014,43(18):6684-6688.
DOI URL |
[13] |
ARMSTRONG M R, SHAN B, MARINGANTI S V, et al. Hierarchical pore structures and high ZIF-8 loading on matrimid electrospun fibers by additive removal from a blended polymer precursor. Industrial & Engineering Chemistry Research, 2016,55(37):9944-9951.
DOI URL |
[14] | AN S, LEE J S, JOSHI B N, et al. Freestanding fiber mats of zeolitic imidazolate framework 7 via one-step, scalable electrospinning. Journal of Applied Polymer Science, 2016,133(32):43788. |
[15] |
ISMAIL F M, ABDELLAH A M, ALI P A, et al. Bilayer sandwich-like membranes of metal organic frameworks electrospun polymeric nanofibers via SiO2 nanoparticles seeding. Materials Today Communications, 2017,12:119-124.
DOI URL |
[16] | HAO Z, WU J, WANG C, et al. Electrospun polyimide/metal- organic framework nanofibrous membrane with superior thermal stability for efficient PM2.5 capture. ACS Applied Materials & Interfaces, 2019,11(12):11904-11909. |
[17] | EFOME J E, RANA D, MATSUURA T, et al. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Applied Materials & Interfaces, 2018,10(22):18619-18629. |
[18] |
EFOME J E, RANA D, MATSUURA T, et al. Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane. Chemical Engineering Journal, 2018,352:737-744.
DOI URL |
[19] |
EFOME J E, RANA D, MATSUURA T, et al. Metal-organic frameworks supported on nanofibers to remove heavy metals. Journal of Materials Chemistry A, 2018,6(10):4550-4555.
DOI URL |
[20] | SHOOTO N D, WANKASI D, SIKHWVHILU C, et al. Novel super adsorbents (PVA and PVA/Cu-MOF nanofibres) as effective lead ions remover in aqueous solution. Dig. J. Nanomater. Biostruct., 2016,11:425-434. |
[21] |
SHOOTO N D, DIKIO C W, WANKASI D, et al. Novel PVA/MOF nanofibres: fabrication, evaluation and adsorption of lead ions from aqueous solution. Nanoscale Research Letters, 2016,11(1):1-13.
DOI URL |
[22] | WANG C, ZHENG T, LUO R, et al. In situ growth of ZIF-8 on PAN fibrous filters for highly efficient U(VI) removal. ACS Applied Materials & Interfaces, 2018,10(28):24164-24171. |
[23] |
LU A X, PLOSKONKA A M, TOVAR T M, et al. Direct surface growth of UIO-66-NH2 on polyacrylonitrile nanofibers for efficient toxic chemical removal. Industrial & Engineering Chemistry Research, 2017,56(49):14502-14506.
DOI URL |
[24] |
LI Z, ZHOU G, DAI H, et al. Biomineralization-mimetic preparation of hybrid membranes with ultra-high loading of pristine metal-organic frameworks grown on silk nanofibers for hazard collection in water. Journal of Materials Chemistry A, 2018,6(8):3402-3413.
DOI URL |
[25] | LIU C, WU Y N, MORLAY C, et al. General deposition of metal-organic frameworks on highly adaptive organic-inorganic hybrid electrospun fibrous substrates. ACS Applied Materials & Interfaces, 2016,8(4):2552-2561. |
[26] |
GAO M, ZENG L, NIE J, et al. Polymer-metal-organic framework core-shell framework nanofibers via electrospinning and their gas adsorption activities. RSC Advances, 2016,6(9):7078-7085.
DOI URL |
[27] |
WU Y N, LI F, LIU H, et al. Electrospun fibrous mats as skeletons to produce free-standing MOF[ membranes. Journal of Materials Chemistry, 2012,22(33):16971-16978.
DOI URL |
[28] |
BECHELANY M, DROBEK M, VALLICARI C, et al. Highly crystalline MOF-based materials grown on electrospun nanofibers. Nanoscale, 2015,7(13):5794-5802.
DOI URL |
[29] | DWYER D B, LEE D T, BOYER S, et al. Toxic organophosphate hydrolysis using nanofiber-templated UIO-66-NH2 metal-organic framework polycrystalline cylinders. ACS Applied Materials & Interfaces, 2018,10(30):25794-25803. |
[30] |
ZHOU M, LI J, ZHANG M, et al. A polydopamine layer as the nucleation center of MOF deposition on “inert” polymer surfaces to fabricate hierarchically structured porous films. Chemical Communications, 2015,51(13):2706-2709.
DOI URL |
[31] |
FAN L, XUE M, KANG Z, et al. Electrospinning technology applied in zeolitic imidazolate framework membrane synthesis. Journal of Materials Chemistry, 2012,22(48):25272-25276.
DOI URL |
[32] |
ARMSTRONG M, SIROU P, SHAN B, et al. Prolonged HKUST-1 functionality under extreme hydrothermal conditions by electrospinning polystyrene fibers as a new coating method. Microporous and Mesoporous Materials, 2018,270:34-39.
DOI URL |
[33] |
CHOI C, KADAM R L, GAILWAD S, et al. Metal organic frameworks immobilized polyacrylonitrile fiber mats with polyethyleneimine impregnation for CO2 capture. Microporous and Mesoporous Materials, 2020,296:110006.
DOI URL |
[34] |
FAN X, YU L, LI L, et al. Characterization and application of zeolitic imidazolate framework-8@polyvinyl alcohol nanofibers mats prepared by electrospinning. Materials Research Express, 2017,4(2):026404.
DOI URL |
[35] |
ZHAN Y, GUAN X, REN E, et al. Fabrication of zeolitic imidazolate framework-8 functional polyacrylonitrile nanofibrous mats for dye removal. Journal of Polymer Research, 2019,26(6):145.
DOI URL |
[36] |
ZHAO R, TIAN Y, LI S, et al. An electrospun fiber based metal-organic framework composite membrane for fast, continuous, and simultaneous removal of insoluble and soluble contaminants from water. Journal of Materials Chemistry A, 2019,7(39):22559-22570.
DOI URL |
[37] | LI T, LIU L, ZHANG Z, et al. Preparation of nanofibrous metal-organic framework filter for rapid adsorption and selective separation of cationic dye from aqueous solution. Separation and Purification Technology, 2020,237:116360. |
[38] |
JAMSHIDIFARD S, KOUSHKBAGHI S, HOSSEINI S, et al. Incorporation of UIO-66-NH2 MOF into the PAN/chitosan nanofibers for adsorption and membrane filtration of Pb(II), Cd(II) and Cr(VI) ions from aqueous solutions. Journal of Hazardous Materials, 2019,368:10-20.
DOI URL |
[39] | HOU X, ZHOU H, ZHANG J, et al. High adsorption pearl-necklace-like composite membrane based on metal-organic framework for heavy metal ion removal. Particle & Particle Systems Characterization, 2018,35(6):1700438. |
[40] |
LEUS K, KRISHNARAJ C, VERHOEVEN L, et al. Catalytic carpets: Pt@MIL-101@electrospun PCL, a surprisingly active and robust hydrogenation catalyst. Journal of Catalysis, 2018,360:81-88.
DOI URL |
[41] |
DAI X, LI X, ZHANG M, et al. Zeolitic imidazole framework/ graphene oxide hybrid functionalized poly (lactic acid) electrospun membranes: A promising environmentally friendly water treatment material. ACS Omega, 2018,3(6):6860-6866.
DOI URL |
[42] | LU A X, MCENTEE M, BROWE M A, et al. Mofabric: electrospun nanofiber mats from PVDF/UIO-66-NH2 for chemical protection and decontamination. ACS Applied Materials & Interfaces, 2017,9(15):13632-13636. |
[43] | PETERSON G W, LU A X, EPPS T H. Tuning the morphology and activity of electrospun polystyrene/UIO-66-NH2 metal-organic framework composites to enhance chemical warfare agent removal. ACS Applied Materials & Interfaces, 2017,9(37):32248-32254. |
[44] |
MCCARTHY D L, LIU J, DWYER D B, et al. Electrospun metal-organic framework polymer composites for the catalytic degradation of methyl paraoxon. New Journal of Chemistry, 2017,41(17):8748-8753.
DOI URL |
[45] |
XU Y, WEN Y, ZHU W, et al. Electrospun nanofibrous mats as skeletons to produce MOF membranes for the detection of explosives. Materials Letters, 2012,87:20-23.
DOI URL |
[46] |
SHANGGUAN J, BAI L, LI Y, et al. Layer-by-layer decoration of nofs on electrospun nanofibers. RSC Advances, 2018,8(19):10509-10515.
DOI URL |
[47] |
LI T T, LIU L, GAO M L, et al. A highly stable nanofibrous Eu-MOF membrane as a convenient fluorescent test paper for rapid and cyclic detection of nitrobenzene. Chemical Communications, 2019,55(34):4941-4944.
DOI URL |
[48] |
ASIABI M, MEHDINIA A, JABBARI A. Preparation of water stable methyl-modified metal-organic framework-5/polyacrylonitrile composite nanofibers via electrospinning and their application for solid-phase extraction of two estrogenic drugs in urine samples. Journal of Chromatography A, 2015,1426:24-32.
DOI URL |
[49] |
ASIABI M, MEHDINIA A, JABBARI A. Electrospun biocompatible chitosan/MIL-101 (Fe) composite nanofibers for solid-phase extraction of Δ9-tetrahydrocannabinol in whole blood samples using box-behnken experimental design. Journal of Chromatography A, 2017,1479:71-80.
DOI URL |
[50] |
LIU F, XU H. Development of a novel polystyrene/metal-organic framework-199 electrospun nanofiber adsorbent for thin film microextraction of aldehydes in human urine. Talanta, 2017,162:261-267.
DOI URL |
[51] |
MEHRAFZA N, SARAZI M. Electrospun polyacrylonitrile-zeolite imidazolate framework-8 nanofibers for the thin-film microextraction of bisphenol A. Separation Science Plus, 2018,1(5):382-388.
DOI URL |
[52] |
YAN Z, WU M, HU B, et al. Electrospun UIO-66/polyacrylonitrile nanofibers as efficient sorbent for pipette tip solid phase extraction of phytohormones in vegetable samples. Journal of Chromatography A, 2018,1542:19-27.
DOI URL |
[53] |
ARABORKHI B, SERESHTI H, ABBASI A. Electrospun metal-organic framework/polyacrylonitrile composite nanofibrous mat as a microsorbent for the extraction of tetracycline residue in human blood plasma. Journal of Separation Science, 2019,42(8):1500-1508.
DOI URL |
[54] | YANG F, EFOME J E, RANA D, et al. Metal-organic frameworks supported on nanofiber for desalination by direct contact membrane distillation. ACS Applied Materials & Interfaces, 2018,10(13):11251-11260. |
[55] |
WU B, PAN J, GE L, et al. Oriented MOF-polymer composite nanofiber membranes for high proton conductivity at high temperature and anhydrous condition. Scientific Reports, 2014,4:4334.
DOI URL |
[56] |
KOHSARI I, SHARIATINIA Z, POURMORTAZAVI S M. Antibacterial electrospun chitosan-polyethylene oxide nanocomposite mats containing ZIF-8 nanoparticles. International Journal of Biological Macromolecules, 2016,91:778-788.
DOI URL |
[57] |
SINGBUMRUNG K, MOTINA K, PISITSAK P, et al. Preparation of Cu-BTC/PVA fibers with antibacterial applications. Fibers and Polymers, 2018,19(7):1373-1378.
DOI URL |
[58] |
GUO Y, CAO Y, CHEN Z, et al. Fluorinated metal-organic framework as bifunctional filler toward highly improving output performance of triboelectric nanogenerators. Nano Energy, 2020,70:104517.
DOI URL |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[12] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||