[1] KASAP S, FREY J B, BELEV G,et al. Amorphous and polycrystalline photoconductors for direct conversion flat panel X-ray image sensors. Sensors (Basel), 2011, 11(5): 5112-5157. [2] SAKDINAWAT A, ATTWOOD D.Nanoscale X-ray imaging.Nature Photonics, 2010, 4(12): 840-848. [3] SZELES C.CdZnTe and CdTe materials for X-ray and gamma ray radiation detector applications.Physica Status Solidi B-basic Research, 2004, 241(3): 783-790. [4] KASAP S O, KABIR M Z, ROWLANDS J A,et al. Dependence of the detective quantum efficiency of photoconductive X-ray image detectors on charge transport parameters and exposure: application to α-Se. Applied Physics Letters, 2002, 81(18): 3482-3484. [5] ZHANG P, YANG J, XWEI S H.Manipulation of cation combinations and configurations of halide double perovskites for solar cell absorbers.Journal of Materials Chemistry A, 2018, 6(4): 1809-1815. [6] XIAOLING W, ZUYONG F, NAN W,et al. Progress on novel perovskite solar cells. Materials China, 2016, 35(12): 960-965. [7] CHENG Z, YLIN J.Layered organic-inorganic hybrid perovskites: structure, optical properties, film preparation, patterning and templating engineering.CrystEngComm, 2010, 12(10): 2646-2662. [8] BHALLA A S, GUO R, YROY R.The perovskite structure: a review of its role in ceramic science and technology.Materials Research Innovations, 2000, 4(1): 3-26. [9] ZHANG B, YAN J, WANG J, et al. Effect of the modulating of organic content on optical properties of single-crystal perovskite. Optical Materials, 2016, 62: 273-278. [10] WANG Z, SHI Z J, LI T T,et al. Stability of perovskite solar cells: a prospective on the substitution of the acation and xanion. Angewandte Chemie-International Edition, 2017, 56(5): 1190-1212. [11] JENA A K, KULKARNI AMIYASAKA T.Halide perovskite photovoltaics: background, status, and future prospects.Chemical Reviews, 2019, 119(5): 3036-3103. [12] YIN W J, YANG J H, KANG J,et al. Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A, 2015, 3(17): 8926-8942. [13] ZHAO X G, YANG J H, FU Y H,et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation. Journal of The American Chemical Society, 2017, 139(7): 2630-2638. [14] SHI D, ADINOLFI V, COMIN R,et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science, 2015, 347(6221): 519-522. [15] HAO F, STOUMPOS C C, CHANG R P H,et al. Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. Journal of The American Chemical Society, 2014, 136(22): 8094-8099. [16] HE J L, VASENKO A S, LONG R,et al. Halide composition controls electron-hole recombination in cesium-lead halide perovskite quantum dots: a time domain ab initio study. Journal of Physical Chemistry Letters, 2018, 9(8): 1872-1879. [17] KOVALENKO M V, PROTESESCU LBODNARCHUK M I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals.Science, 2017, 358(6364): 745-750. [18] WEI H, THUANG J S.Halide lead perovskites for ionizing radiation detection.Nat. Commun. 2019, 10(1): 1066. [19] WEI H T, FANG Y J, MULLIGAN P,et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nature Photonics, 2016, 10(5): 333-339. [20] YAKUNIN S, DIRIN D N, SHYNKARENKO Y,et al. Detection of gamma photons using solution-grown single crystals of hybrid lead halide perovskites. Nature Photonics, 2016, 10(9): 585-589. [21] YAKUNIN S, SYTNYK M, KRIEGNER D,et al. Detection of X-ray photons by solution-processed organic-inorganic perovskites. Nature Photonics, 2015, 9(7): 444-449. [22] LIAN Z P, YAN Q F, GAO T T,et al. Perovskite CH3NH3PbI3(Cl) single crystals: rapid solution growth, unparalleled crystalline quality, and low trap density toward 108 cm-3. Journal of The American Chemical Society, 2016, 138(30): 9409-9412. [23] DONG Q F, FANG Y J, SHAO Y C,et al. Electron-hole diffusion lengths > 175 µm in solution-grown CH3NH3PbI3 single crystals. Science, 2015, 347(6225): 967-970. [24] DENG Y H, PENG E, SHAO Y C,et al. Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor- bladed active layers. Energy & Environmental Science, 2015, 8(5): 1544-1550. [25] LONG RPREZHDO O V. Dopants control electron-hole recombination at perovskite-TiO2 interfaces:Ab initio time-domain study. ACS Nano, 2015, 9(11): 11143-11155. [26] ZHUMEKENOV A A, SAIDAMINOV M I, HAQUE M A,et al. Formamidinium lead halide perovskite crystals with unprecedented long carrier dynamics and diffusion length. ACS Energy Letters, 2016, 1(1): 32-37. [27] YETTAPU G R, TALUKDAR D, SARKAR S,et al. Terahertz conductivity within colloidal CsPbBr3 perovskite nanocrystals: remarkably high carrier mobilities and large diffusion lengths. Nano Letters, 2016, 16: 4838-4848. [28] MIYATA A, MITIOGLU A, PLOCHOCKA P,et al. Direct measurement of the exciton binding energy and effective masses for charge carriers in organic-inorganic tri-halide perovskites. Nature Physics, 2015, 11(7): 582-587. [29] D'INNOCENZO V, GRANCINI G, ALCOCER M J P,et al. Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 2014, 5: 3586. [30] PAN W C, WU H D, LUO J J, et al. Cs2AgBiBr6 single-crystal X- ray detectors with a low detection limit. Nature Photonics, 2017, 11(11): 726-732. [31] HU X, ZHANG X, LIANG L,et al. High-performance flexible broadband photodetector based on organolead halide perovskite. Advanced Functional Materials, 2014, 24(46): 7373-7380. [32] HEO J H, SHIN D H, PARK J K, et al. High-performance next- generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Advanced Materials, 2018, 30(40): e1801743. [33] KIM Y C, KIM K H, SON D Y, et al. Printable organometallic perovskite enables large-area, low-dose X-ray imaging. Nature, 2017, 550(7674): 87-91. [34] WU Y T, HAN D, CHAKOUMAKOS B C,et al. Zero-dimensional Cs4EuX6(X=Br, I) all-inorganic perovskite single crystals for gamma-ray spectroscopy. Journal of Materials Chemistry C, 2018, 6(25): 6647-6655. [35] ZHOU H W, NIE Z H, YIN J,et al. Antisolvent diffusion-induced growth, equilibrium behaviours in aqueous solution and optical properties of CH3NH3PbI3 single crystals for photovoltaic applications. RSC Advances, 2015, 5(104): 85344-85349. [36] HUANG J S, SHAO Y, CDONG Q F.Organometal trihalide perovskite single crystals: a next wave of materials for 25% efficiency photovoltaics and applications beyond?Physical Chemistry Letters, 2015, 6(16): 3218-3227. [37] SU J, CHEN D, PLIN C T.Growth of large CH3NH3PbX3 (X=I, Br) single crystals in solution.Journal of Crystal Growth, 2015, 422: 75-79. [38] RONG Y, TANG Z, ZHAO Y,et al. Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells. Nanoscale, 2015, 7(24): 10595-10599. [39] EISEN Y, SHOR A, MARDOR I.CdTe and CdZnTe X-ray and γ-ray detectors for imaging systems. IEEE Transactions on Nuclear Science, 2004, 51(3): 1191-1198. [40] DVORYANKIN V F, DVORYANKINA G G, KUDRYASHOV A A,et al. X-ray sensitivity of Cd0.9Zn0.1Te detectors. Technical Physics, 2010, 55(2): 306-308. [41] SHEARER D, RBOPAIAH M.Dose rate limitations of integrating survey meters for diagnostic X-ray surveys.Health Physics, 2000, 79(2 Suppl): S20-21. [42] CLAIRAND I, BORDY J M, CARINOU E, et al. Use of active personal dosemeters in interventional radiology and cardiology: tests in laboratory conditions and recommendations-oramed project. Radiation Measurements, 2011, 46(11): 1252-1257. [43] CONINGS B, DRIJKONINGEN J, GAUQUELIN N,et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Advanced Energy Materials, 2015, 5: 1500477. [44] YIN W J, CHEN H Y, SHI T T,et al. Origin of high electronic quality in structurally disordered CH3NH3PbI3 and the passivation effect of Cl and O at grain boundaries. Advanced Electronic Materials, 2015, 1: 1500044. [45] STOUMPOS C C, MALLIAKAS C D, PETERS J A,et al. Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection. Crystal Growth & Design, 2013, 13(7): 2722-2727. [46] YUAN Y, BHUANG J S.Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability.Accounts of Chemical Research, 2016, 49(2): 286-293. [47] LEE J W, KIM D H, KIM H S,et al. Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell. Advanced Energy Materials, 2015, 5: 1501310. [48] YI C Y, LUO J S, MELONI S,et al. Entropic stabilization of mixed a-cation ABX3 metal halide perovskites for high performance perovskite solar cells. Energy & Environmental Science, 2016, 9(2): 656-662. [49] CHEN C Y, LIN H Y, CHIANG K M,et al. All-vacuum-deposited stoichiometrically balanced inorganic cesium lead halide perovskite solar cells with stabilized efficiency exceeding 11%. Advanced Materials, 2017, 29(12): 1605290. [50] WU Y, HUANG Y, CAO F,et al. Capping CsPbBr3 with ZnO to improve performance and stability of perovskite memristors. Nano Research, 2017, 10(5): 1584-1594. [51] LI X, YU D, WANG Y,et al. Constructing fast carrier tracks into flexible perovskite photodetectors to greatly improve responsivity. ACS Nano, 2017, 11(2): 2015-2023. [52] XUE J, GU Y, SHAN Q,et al. Constructing mie-scattering porous interface-fused perovskite films to synergistically boost light harvesting and carrier transport. Angewandte Chemie International Edition, 2017, 56: 5232-5236. [53] HUANG C Y, ZOU C, MAO C,et al. CsPbBr3 perovskite quantum dot vertical cavity lasers with low threshold and high stability. ACS Photonics, 2017, 4(9): 2281-2289. [54] HUO C, LIU X, SONG X,et al. Field-effect transistors based on van-der-Waals-grown and dry-transferred all-inorganic perovskite ultrathin platelets. Journal of Physical Chemistry Letters, 2017, 8: 4785-4792. [55] LIU D, LIN Q, ZANG Z,et al. Flexible all-inorganic perovskite CsPbBr3 nonvolatile memory device. ACS Applied Materials & Interfaces, 2017, 9: 6171-6176. [56] PANIGRAHI S, JANA S, CALMEIRO T,et al. Imaging the anomalous charge distribution inside CsPbBr3 perovskite quantum dots sensitized solar cells. ACS Nano, 2017, 11: 10214-10221. [57] ZHANG L, YANG X, JIANG Q,et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nature Communication, 2017, 8: 15640. [58] YANG B, ZHANG F, CHEN J,et al. Ultrasensitive and fast all- inorganic perovskite-based photodetector via fast carrier diffusion. Advanced Materials, 2017, 29(40): 1703758. [59] PROTESESCU L, YAKUNIN S, BODNARCHUK M I, et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X=Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Letters, 2015, 15(6): 3692-3696. [60] ZHANG Z Q, FENG X, LU X,et al. Polymer-passivated inorganic cesium lead mixed-halide perovskites for stable and efficient solar cells with high open-circuit voltage over 1.3 V. Advanced Materials, 2018, 30(9): 1705393. [61] YANG T, ZHENG Y, DU Z,et al. Superior photodetectors based on all-inorganic perovskite CsPbI3 nanorods with ultrafast re-sponse and high stability. ACS Nano, 2018, 12(2): 1611-1617. [62] LOU-WEN Z, SHAO-LI S, LU-YING L,et al. Application and development of cesium lead halide perovskite based planar heterojunction leds. Journal of Inorganic Materials, 2019, 34: 37-48. [63] SLAVNEY A H, HU T, LINDENBERG A M, et al. A bismuth- halide double perovskite with long carrier recombination lifetime for photovoltaic applications. Journal of The American Chemical Society, 2016, 138(7): 2138-2141. [64] STEELE J A, PAN W C, MARTIN C,et al. Photophysical pathways in highly sensitive Cs2AgBiBr6 double-perovskite single-crystal X-ray detectors. Advanced Materials, 2018, 30(46): e1804450. [65] CHU L, AHMAD W, LIU W, et al. Lead-free halide double perovskite materials: a new superstar toward green and stable optoelectronic applications. Nano-Micro Letters., 2019, 11: 16. [66] LEE B, STOUMPOS C C, ZHOU N J,et al. Air-stable molecular semiconducting lodosalts for solar cell applications: Cs2SnI6 as a hole conductor. Journal of the American Chemical Society, 2014, 136(43): 15379-15385. [67] SAPAROV B, SUN J P, MENG W W,et al. Thin-film deposition and characterization of a Sn-deficient perovskite derivative Cs2SNi6. Chemistry of Materials, 2016, 28(7): 2315-2322. [68] MAUGHAN A E, GANOSE A M, BORDELON M M, et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SNi6 and Cs2TeI6. Journal of The American Chemical Society, 2016, 138(27): 8453-8464. [69] KALTZOGLOU A, ANTONIADOU M, KONTOS A G,et al. Optical-vibrational properties of the Cs2SnX6(X=Cl, Br, I) defect perovskites and hole-transport efficiency in dye-sensitized solar cells. Journal of Physical Chemistry C, 2016, 120(22): 11777-11785. [70] LEE B, KRENSELEWSKI A, BAIK S I, et al. Solution processing of air-stable molecular semiconducting iodosalts, Cs2SnI6-xBrx, for potential solar cell applications. Sustainable Energy & Fuels, 2017, 1(4): 710-724. [71] JU M G, CHEN M, ZHOU Y Y, et al. Earth-abundant nontoxic titanium (IV)-based vacancy-ordered double perovskite halides with tunable 1.0 to 1.8 eV bandgaps for photovoltaic applications. ACS Energy Letters, 2018, 3(2): 297-304. [72] ZHANG J, YU C H, WANG L L, et al. Energy barrier at the N719- dye/CsSNi3 interface for photogenerated holes in dye-sensitized solar cells. Scientific Reports, 2014, 4: 6954. [73] CLARK R J, HTRUMBLE W R.Resonance raman-spectra of some mixed-valence halogeno-compounds of antimony and lead.Journal of The Chemical Society-Dalton Transactions, 1976, 12(12): 1145-1149. [74] MAUGHAN A E, GANOSE A M, CANDIA A M, et al. Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chemistry of Materials, 2018, 30(2): 472-483. [75] MAUGHAN A E, GANOSE A M, ALMAKER M A,et al. Tolerance factor and cooperative tilting effects in vacancy-ordered double perovskite halides. Chemistry of Materials, 2018, 30(11): 3909-3919. [76] SAKAI N, HAGHIGHIRAD A A, FILIP M R, et al. Solution- processed cesium hexabromopalladate (IV), Cs2PdBr6, for optoelectronic applications. Journal of The American Chemical Society, 2017, 139(17): 6030-6033. [77] EVANS H A, FABINI D H, ANDREWS J L,et al. Hydrogen bonding controls the structural evolution in perovskite-related hybrid platinum (IV) iodides. Inorganic Chemistry, 2018, 57(16): 10375-10382. [78] KALTZOGLOU A, ANTONIADOU M, PERGANTI D,et al. Mixed-halide Cs2SnI3Br3 perovskite as low resistance hole-transporting material in dye-sensitized solar cells. Electrochimica Acta, 2015, 184: 466-474. [79] ZHANG H N, GAO Z Y, LIANG X R.X-ray detector based on all-inorganic lead-free Cs2AgBiBr6 perovskite single crystal.IEEE Transactions on Electron Devices, 2019, 66(5): 2224-2229. [80] DAY P.Spectra and constitution of antimony (III), antimony (V) hexahalide salts and related compounds.Molecules into Materials, 2007, 2: 120-124. [81] WEI W, ZHANG Y, XU Q,et al. Monolithic integration of hybrid perovskite single crystals with heterogenous substrate for highly sensitive X-ray imaging. Nature Photonics, 2017, 11(5): 315-321. [82] LI H R, SHAN X, NEU J N,et al. Lead-free halide double perovskite-polymer composites for flexible X-ray imaging. Journal of Materials Chemistry C, 2018, 6(44): 11961-11967. [83] HE Y H, KE W J, ALEXANDER G C B,et al. Resolving the energy of gamma-ray photons with mapbi(3) single crystals. ACS Photonics, 2018, 5(10): 4132-4138. [84] WEI H T, DESANTIS D, WEI W,et al. Dopant compensation in alloyed CH3NH3PbBr3-xClx perovskite single crystals for gamma- ray spectroscopy. Nature Materials, 2017, 16(8): 826-833. [85] HE Y H, MATEI L, JUNG H J,et al. High spectral resolution of gamma-rays at room temperature by perovskite CsPbBr3 single crystals. Nat. Commun., 2018, 9(1): 1609. [86] NAZARENKO O, YAKUNIN S, MORAD V,et al. Single crystals of caesium formamidinium lead halide perovskites: solution growth and gamma dosimetry. NPG Asia Materials, 2017, 9: e373. [87] CHEN Q S, WU J, OU X Y,et al. All-inorganic perovskite nanocrystal scintillators. Nature, 2018, 561(7721): 88-93. [88] BIROWOSUTO M D, CORTECCHIA D, DROZDOWSKI W,et al. X-ray scintillation in lead halide perovskite crystals. Sci. Rep., 2016, 6: 37254. [89] SHAN X, WANG S, MENG G, et al. Interface engineering of electron transport layer/light absorption layer of perovskite solar cells. Progress in Chemistry, 2019, 31(5): 714-722. |