[1] |
KANEKO K, KATO T, KITAYAMA M , et al. Precipitation of MgO. nAl2O3 in Mg-Doped α-Al2O3 under electron irradiation. Journal of the American Ceramic Society, 2003,86(1):161-168.
|
[2] |
BONEVICH J E, MARKS L D . Electron radiation damage of α-alumina. Ultramicroscopy, 1991,35(2):161-166.
|
[3] |
TOMOKIYO Y, MANABE T, KINOSHITA C . Structural change induced near surfaces of α-Al2O3 during electron irradiation. Microscopy Microanalysis Microstructures, 1993,4(2/3):331-339.
|
[4] |
TOMOKIYO Y, KUROIWA T, KINOSHITA C . Defects occurring at or near surfaces in α-Al2O3 during electron irradiation. Ultramicroscopy, 1991,39(1-4):213-221.
|
[5] |
CHEN C L, ARAKAWA K, LEE J G , et al. Electron-irradiation- induced phase transformation in alumina. Scripta Materialia, 2010,63(10):1013-1016.
|
[6] |
OH S H, KAUFFMANN Y, SCHEU C , et al. Ordered liquid aluminum at the interface with sapphire. Science, 2005,310(5748):661-663.
|
[7] |
PELLS AERE G P, SHIKAMA T . Radiation damage in pure and helium-doped α-Al2O3 in the HVEM Quantitative aspects of void and aluminium precipitate formation. Philosophical Magazine A, 1983,48(5):779-794.
|
[8] |
CHEN C L, FURUSHO H, MORI H . In situ TEM observation of decomposition of high-purity sapphire. Philosophical Magazine Letters, 2009,89(2):113-119.
|
[9] |
CHEN C L, FURUSHO H, MORI H . Effects of temperature and electron energy on the electron-irradiation-induced decomposition of sapphire. Philosophical Magazine Letters, 2010,90(10):715-721.
|
[10] |
BOUCHET D, COLLIEX C . Experimental study of ELNES at grain boundaries in alumina: intergranular radiation damage effects on Al-L23 and OK edges. Ultramicroscopy, 2003,96(2):139-152.
|
[11] |
BERGER S D, SALISBURY I G, MILNE R H , et al. Electron energy-loss spectroscopy studies of nanometre-scale structures in alumina produced by intense electron-beam irradiation. Philosophical Magazine B, 1987,55(3):341-358.
|
[12] |
WANG D, SHEN L, RAN S , et al. Transparent alumina fabricated by SPS sintering with AlF3 doping. Scripta Materialia, 2014,92(1):31-34.
|
[13] |
CHEN G S, BOOTHROYD C B, HUMPHREYS C J . Electron- beam induced crystallization transition in self-developing amorphous AlF3 resists. Applied Physics Letters, 1996,69(2):170-172.
|
[14] |
MA C, BERTA Y, WANG Z L . Patterned aluminum nanowires produced by electron beam at the surfaces of AlF3 single crystals. Solid State Communications, 2004,129(10):681-685.
|
[15] |
GHATAK J, GNANAVEL T, GUAN W , et al. Electron Beam Synthesis of 3D Metal Nanostructures from Fluoride Precursors. MRS Online Proceedings Library Archive, 2012: 1411.
|
[16] |
WANG J, GAO L . Photoluminescence properties of nanocrystalline ZnO ceramics prepared by pressureless sintering and spark plasma sintering. Journal of the American Ceramic Society, 2005,88(6):1637-1639.
|
[17] |
JIANG D T, MUKHERJEE A K . The influence of oxygen vacancy on the optical transmission of an yttria-magnesia nanocomposite. Scripta Materialia, 2011,64(12):1095-1097.
|
[18] |
MEIR S, KALABUKHOV S, FROUMIN N , et al. Synthesis and densification of transparent magnesium aluminate spinel by SPS processing. Journal of the American Ceramic Society, 2009,92(2):358-364.
|
[19] |
REIMANIS I, KLEEBE H J . A review on the sintering and microstructure development of transparent spinel (MgAl2O4). Journal of the American Ceramic Society, 2009,92(7):1472-1480.
|
[20] |
WILLIAMS D B, CARTER C B. Transmission Electron Microscopy: a Textbook for Materials Science, 2nd edition. New York: Springer Press, 2009: 271-282.
|
[21] |
HEUER A H, LAGERLOF K P D, CASTAING J. Slip and twinning dislocations in sapphire (α-Al2O3). Philosophical Magazine A, 1998,78(3):747-763.
|
[22] |
CASTILLO-RODRIGUEZ M, MUNOZ A, CASTAING J ,et al. Basal slip latent hardening by prism plane slip dislocations in sapphire(α-Al2O3). Acta Materialia, 2010,58(17):5610-5619.
|
[23] |
MARDER R, CHAIM R, CHEVALLIER G , et al. Effect of 1wt% LiF additive on the densification of nanocrystalline Y2O3 ceramics by spark plasma sintering. Journal of the European Ceramic Society, 2011,31(6):1057-1066.
|