[1] BALAT M.Potential importance of hydrogen as a future solution to environmental and transportation problems.International Journal of Hydrogen Energy, 2008, 33(15): 4013-4029. [2] MUELLER-LANGER F, TZIMAS E, KALTSCHMITT M,et al. Techno-economic assessment of hydrogen production processes for the hydrogen economy for the short and medium term. International Journal of Hydrogen Energy, 2007, 32(16): 3797-3810. [3] BODDIEN A, LOGES B, JUNGE H,et al. Hydrogen generation at ambient conditions: application in fuel cells. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2008, 1(8/9): 751-758. [4] BRUEL M.Application of hydrogen ion beams to silicon on insulator material technology.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1996, 108(3): 313-319. [5] WEI S, ZHOU S, WU Z,et al. Mechanistic insights into porous graphene membranes for helium separation and hydrogen purification. Applied Surface Science, 2018, 441: 631-638. ZHOU S, WANG Z, WANG M,et al. Nanoporous boron nitride membranes for helium separation. ACS Applied Nano Materials, 2019, 2(7): 4471-4479. [6] WANG M, WANG Z, ZHOU S,et al. Strain-controlled carbon nitride: a continuously tunable membrane for gas separation. Applied Surface Science, 2020, 506: 144675. [7] LI F, QU Y, ZHAO M.Efficient helium separation of graphitic carbon nitride membrane.Carbon, 2015, 95: 51-57. [8] MA Z, ZHAO X, TANG Q,et al. Computational prediction of experimentally possible g-C3N3 monolayer as hydrogen purification membrane. International Journal of Hydrogen Energy, 2014, 39(10): 5037-5042. [9] XU B, XIANG H, WEI Q, et al. Two-dimensional graphene-like C2N: an experimentally available porous membrane for hydrogen purification. Physical Chemistry Chemical Physics, 2015, 17(23): 15115-15118. [10] CHEN H, ZHANG S, JIANG W,et al. Prediction of two-dimensional nodal-line semimetals in a carbon nitride covalent network. Journal of Materials Chemistry A, 2018, 6(24): 11252-11259. [11] DELLEY B.From molecules to solids with the DMol3 approach.Journal of Chemical Physics, 2000, 113(18): 7756-7764. [12] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple.Physical Review Letters, 1996, 77(18): 3865. [13] GRIMME S, ANTONY J, EHRLICH S,et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. The Journal of Chemical Physics, 2010, 132(15): 154104. [14] HALGREN T A, LIPSCOMB W N.The synchronous-transit method for determining reaction pathways and locating molecular transition states.Chemical Physics Letters, 1977, 49(2): 225-232. [15] SUN H.COMPASS: anab initio force-field optimized for condensed-phase applications overview with details on alkane and benzene compounds. The Journal of Physical Chemistry B, 1998, 102(38): 7338-7364. [16] ZHU L, XUE Q, LI X,et al. C2N: an excellent two-dimensional monolayer membrane for He separation. Journal of Materials Chemistry A, 2015, 3(42): 21351-21356. [17] LI Y, LIAO Y, CHEN Z.Be2C monolayer with quasi-planar hexacoordinate carbons: a global minimum structure.Angewandte Chemie International Edition, 2014, 53(28): 7248-7252. [18] BLANKENBURG S, BIERI M, FASEL R, et al. Porous graphene as an atmospheric nanofilter. Small, 2010, 6(20): 2266-2271. [19] HU W, WU X, LI Z,et al. Porous silicene as a hydrogen purification membrane. Physical Chemistry Chemical Physics, 2013, 15(16): 5753-5757. [20] JIAO Y, DU A, HANKEL M,et al. Graphdiyne: a versatile nanomaterial for electronics and hydrogen purification. Chemical Communications, 2011, 47(43): 11843-11845. [21] OYAMA S, LEE D, HACARLIOGLU P,et al. Theory of hydrogen permeability in nonporous silica membranes. Journal of Membrane Science, 2004, 244(1/2): 45-53. [22] ZHU Z.Permeance should be used to characterize the productivity of a polymeric gas separation membrane.Journal of Membrane Science, 2006, 281(1/2): 754-755. |