[1] SHAFFER D L, ARIAS CHAVEZ L H, BEN-SASSON M, et al. Desalination and reuse of high-salinity shale gas produced water: drivers, technologies, and future directions. Environ. Sci. Technol., 2013, 47(17): 9569-9583. [2] PEREZ-GONZALEZ A, URTIAGA A M, IBANEZ R,et al. State of the art and review on the treatment technologies of water reverse osmosis concentrates. Water Res., 2012, 46(2): 267-283. [3] XU R, LIN P, ZHANG Q,et al. Development of ethenylene-bridged organosilica membranes for desalination applications. Ind. Eng. Chem. Res., 2016, 55(7): 2183-2190. [4] WANG Q, LI N, BOLTO B,et al. Desalination by pervaporation: a review. Desalination, 2016, 387: 46-60. [5] KAMINSKI W, MARSZALEK J, TOMCZAK E.Water desalination by pervaporation - comparison of energy consumption.Desalination, 2018, 433: 89-93. [6] CHAUDHRI S G, RAJAI B H, SINGH P S.Preparation of ultra-thin poly (vinyl alcohol) membranes supported on polysulfone hollow fiber and their application for production of pure water from seawater.Desalination, 2015, 367: 272-284. [7] DROBEK M, YACOU C, MOTUZAS J, et al. Long term pervaporation desalination of tubular MFI zeolite membranes. J. Membr. Sci., 2012, 415-416: 816-823. [8] CAO Z, ZENG S, XU Z, ,et al. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv.. Ultrathin ZSM-5 zeolite nanosheet laminated membrane for high-flux desalination of concentrated brines. Sci. Adv., 2018, 4(11): eaau8634. [9] LIANG W, LI L, HOU J, et al. Linking defects, hierarchical porosity generation and desalination performance in metal-organic frameworks. Chem. Sci., 2018, 9(14): 3508-3516. [10] HOFFMANN F, CORNELIUS M, MORELL J, et al. Silica-based mesoporous organic-inorganic hybrid materials. Angew. Chem. Int. Ed., 2006, 45(20): 3216-3251. [11] CASTRICUM H L, SAH A, KREITER R, et al. Hydrothermally stable molecular separation membranes from organically linked silica. J. Mater. Chem., 2008, 18(18): 2150-2158. [12] KANEZASHI M, YADA K, YOSHIOKA T, et al. Design of silica networks for development of highly permeable hydrogen separation membranes with hydrothermal stability. J. Am. Chem. Soc., 2009, 131(2): 414-415. [13] XU R, WANG J, KANEZASHI M, et al. Development of robust organosilica membranes for reverse osmosis. Langmuir, 2011, 27(23): 13996-13999. [14] XU R, KANEZASHI M, YOSHIOKA T,et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Appl. Mater. Inter., 2014, 6(12): 9357-9364. [15] PARK K S, NI Z, CÔTÉ A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci., 2006, 103(27): 10186-10191. [16] DUAN J, PAN Y, PACHECO F, et al. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J. Membr. Sci., 2015, 476: 303-310. [17] JAYARAMULU K, DATTA K K, ROSLER C, et al. Biomimetic superhydrophobic/superoleophilic highly fluorinated graphene oxide and ZIF-8 composites for oil-water separation. Angew. Chem. Int. Ed., 2016, 55(3): 1178-1182. [18] ASAEDA M, YANG J, SAKOU Y, et al. Porous silica-zirconia (50%) membranes for pervaporation of iso-propyl alcohol (IPA)/water mixtures. J. Chem. Eng. Jpn., 2002, 35: 365-371. [19] XU R, GUO M, WANG J,et al. Fabrication of solvent resistant copolyimide membranes for pervaporation recovery of amide solvents. Chem. Eng. Technol., 2018, 41(2): 337-344. [20] WIJMANS J G, BAKER R W. The solution-diffusion model: a review. J. Membr. Sci., 1995, 107(1): 1-21. [21] KHAYET M. Membranes and theoretical modeling of membrane distillation: a review. Adv. Colloid Interface Sci., 2011, 164(1-2): 56-88. [22] YU S, LI S, HUANG S,et al. Covalently bonded zeolitic imidazolate frameworks and polymers with enhanced compatibility in thin film nanocomposite membranes for gas separation. J. Membr. Sci., 2017, 540: 155-164. [23] XU R, KANEZASHI M, YOSHIOKA T,et al. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification. ACS Appl. Mater. Inter., 2013, 5(13): 6147-6154. [24] VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. J. Am. Chem. Soc., 2010, 132(1): 76-78. [25] ZHANG H, WEN J, SHAO Q,et al. Fabrication of La/Y-codoped microporous organosilica membranes for high-performance pervaporation desalination. J. Membr. Sci., 2019, 584: 353-363. [26] XU R, ZOU L, LIN P,et al. Pervaporative desulfurization of model gasoline using PDMS/BTESE-derived organosilica hybrid membranes. Fuel Process. Technol., 2016, 154: 188-196. [27] COHEN-TANUGI D, GROSSMAN J C.Water desalination across nanoporous graphene.Nano Lett., 2012, 12(7): 3602-3608. |