无机材料学报 ›› 2020, Vol. 35 ›› Issue (3): 260-270.DOI: 10.15541/jim20190436
所属专题: 2020年环境材料论文精选(二)重金属元素去除; 优秀作者论文集锦; 2019~2020年度优秀作者作品欣赏:环境材料
王祥学1,2,李星1,王佳琦1,朱洪涛1
收稿日期:
2019-08-19
修回日期:
2019-10-03
出版日期:
2020-03-20
网络出版日期:
2019-10-25
作者简介:
王祥学(1976-), 男, 博士, 讲师. E-mail: wang730304@163.com
WANG Xiangxue1,2,LI Xing1,WANG Jiaqi1,ZHU Hongtao1
Received:
2019-08-19
Revised:
2019-10-03
Published:
2020-03-20
Online:
2019-10-25
About author:
WANG Xiangxue (1976-), male, PhD, lecturer. E-mail: wang730304@163.com
Supported by:
摘要:
石墨相氮化碳材料作为一种重要的二维层状材料, 在光催化、能源存储和环境污染治理等领域引起了广泛关注。氮化碳基复合材料以其稳定的物理化学性质、低成本和环境友好等特点成为不同领域的研究热点。在过去几年中, 氮化碳及其氮化碳基复合材料的制备、性质表征和不同领域应用取得了重要进展。本文总结了近几年氮化碳基复合材料的制备及掺杂和功能化研究, 及其在重金属离子废水中的去除应用, 以及不同研究方法对吸附机理的分析。最后还总结了氮化碳基材料在未来研究和应用中面临的主要问题、挑战和机遇。
中图分类号:
王祥学, 李星, 王佳琦, 朱洪涛. 氮化碳基纳米复合材料在重金属去除方面研究进展[J]. 无机材料学报, 2020, 35(3): 260-270.
WANG Xiangxue, LI Xing, WANG Jiaqi, ZHU Hongtao. Recent Advances in Carbon Nitride-based Nanomaterials for the Removal of Heavy Metal Ions from Aqueous Solution[J]. Journal of Inorganic Materials, 2020, 35(3): 260-270.
g-C3N4-based material | Adsorbate | (m/V)/(g·L-1) | pH | C0/(mg·L-1) | Time/h | T/K | Qmax/(mg·g-1) | Interaction mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
g-C3N4 | Pb(II) | 3.0 | 3.5 | 20 | 1 | 298 | 282 | Inner-sphere surface complexation | [46] |
Cu(II) | 134 | ||||||||
Cd(II) | 112 | ||||||||
Ni(II) | 38 | ||||||||
Coral reef-like g-C3N4 | Pb(II) | 0.2 | 5 | 10 | 2 | 720 | Surface complexation | [31] | |
Cd(II) | 5 | 480 | |||||||
As(V) | 3 | 220 | |||||||
g-C3N4/β-CD | Pb(II) | 0.3 | 5.5 | 10 | 20 | 298 | 101 | Complexation and electrostatic interaction | [48] |
S-g-C3N4 | Pb(II) | 0.2 | 4.5 | 10 | 2 | 298 | 53 | Inner-sphere complexation | [52] |
BCN NS | Pb(II) | 0.4 | 7 | 108.0 | 0.7 | 298 | 211 | Electrostatic interaction and molecular interaction | [53] |
Hg(II) | 307.8 | 625 | |||||||
Fe3O4&g-C3N4 | Pb(II) | 1 | 6 | 200 | 1 | 298 | 424 | Conjugation | [54] |
GNS | Pb(II) | 1 | 5.1 | 0.7 | 407 | Ion exchange | [56] | ||
Cd(II) | 6.2 | 73 | |||||||
2D-g-C3N4 nanosheets | Cd(II) | 0.3 | 7 | 200 | 5 | 318.5 | 94 | π-π conjugate interaction and electrostatic attraction | [57] |
BCN | Cd(II) | 2 | 5 | 11 | 0.2 | 159 | Complexation | [59] | |
OM g-C3N4 | U(VI) | 0.2 | 4 | 10 | 1 | 298 | 150 | Chemisorption | [32] |
l-C3N4/PDA/PEI3 | U(VI) | 0.5 | 5 | 40 | 10 | 298 | 101 | Inner-sphere complexation and surface co-precipitation | [49] |
Table 1 The adsorption of heavy metal ions on g-C3N4-based materials
g-C3N4-based material | Adsorbate | (m/V)/(g·L-1) | pH | C0/(mg·L-1) | Time/h | T/K | Qmax/(mg·g-1) | Interaction mechanism | Ref. |
---|---|---|---|---|---|---|---|---|---|
g-C3N4 | Pb(II) | 3.0 | 3.5 | 20 | 1 | 298 | 282 | Inner-sphere surface complexation | [46] |
Cu(II) | 134 | ||||||||
Cd(II) | 112 | ||||||||
Ni(II) | 38 | ||||||||
Coral reef-like g-C3N4 | Pb(II) | 0.2 | 5 | 10 | 2 | 720 | Surface complexation | [31] | |
Cd(II) | 5 | 480 | |||||||
As(V) | 3 | 220 | |||||||
g-C3N4/β-CD | Pb(II) | 0.3 | 5.5 | 10 | 20 | 298 | 101 | Complexation and electrostatic interaction | [48] |
S-g-C3N4 | Pb(II) | 0.2 | 4.5 | 10 | 2 | 298 | 53 | Inner-sphere complexation | [52] |
BCN NS | Pb(II) | 0.4 | 7 | 108.0 | 0.7 | 298 | 211 | Electrostatic interaction and molecular interaction | [53] |
Hg(II) | 307.8 | 625 | |||||||
Fe3O4&g-C3N4 | Pb(II) | 1 | 6 | 200 | 1 | 298 | 424 | Conjugation | [54] |
GNS | Pb(II) | 1 | 5.1 | 0.7 | 407 | Ion exchange | [56] | ||
Cd(II) | 6.2 | 73 | |||||||
2D-g-C3N4 nanosheets | Cd(II) | 0.3 | 7 | 200 | 5 | 318.5 | 94 | π-π conjugate interaction and electrostatic attraction | [57] |
BCN | Cd(II) | 2 | 5 | 11 | 0.2 | 159 | Complexation | [59] | |
OM g-C3N4 | U(VI) | 0.2 | 4 | 10 | 1 | 298 | 150 | Chemisorption | [32] |
l-C3N4/PDA/PEI3 | U(VI) | 0.5 | 5 | 40 | 10 | 298 | 101 | Inner-sphere complexation and surface co-precipitation | [49] |
Fig. 3 SEM/TEM images and adsorption isotherm results for heavy metal ions(a) Pb(II), Cd(II) and As(V)[31]; (b) Cd(II)[57]; (c) Cu(II)[46]; (d) U(VI)[49]
[1] | CHEN ZHONG-SHAN, WEI DONG-LI, LI QIAN , et al. Macroscopic and microscopic investigation of Cr(VI) immobilization by nanoscaled zero-valent iron supported zeolite MCM-41 via batch, visual, XPS and EXAFS techniques. J. Clean. Prod., 2018,181:745-752. |
[2] | KEN BUESSELER, MICHIO AOYAMA, FUKASAWA MASAO . Impacts of the fukushima nuclear power plants on marine radioactivity. Environ. Sci. Technol., 2011,45(23):9931-9935. |
[3] | HUANG QIANG, SONG SHUANG, CHEN ZHE , et al. Biochar-based materials and their applications in removal of organic contaminants from wastewater: state-of-the-art review. Biochar, 2019,1:45-73. |
[4] | LIU XIAO-LU, MA RAN, WANG XIANG-XUE , et al. Graphene-based composites for efficient removal of heavy metal ions from aqueous solution: a review. Environ. Pollut., 2019,252:62-73. |
[5] | WANG XIANG-XUE, YU SHU-JUN, WANG XIANG-KE . Removal of radionuclides by metal-organic framework-based materials. J. Inorg. Mater., 2019,34(1):17-26. |
[6] | YU SHU-JUN, YIN LING, PANG HONG-WEI , et al. Constructing sphere-like cobalt-molybdenum-nickel ternary hydroxide and calcined ternary oxide nanocomposites for efficient removal of U(VI) from aqueous solutions. Chem. Eng. J., 2018,352:360-370. |
[7] | WANG JIAN, ZHU MING-YU, CHEN ZHONG-SHAN , et al. Polyacrylamide modified molybdenum disulfide composites for efficient removal of graphene oxide from aqueous solutions. Chem. Eng. J., 2019,361:651-659. |
[8] | GU PENG-CHENG, ZHAO CHAO-FENG, WEN TAO , et al. Highly U(VI) immobilization on polyvinyl pyrrolidine intercalated molybdenum disulfide: experimental and computational studies. Chem. Eng. J., 2019,359:1563-1572. |
[9] | YIN LING, HU YE-ZI, MA RAN , et al. Smart construction of mesoporous carbon templated hierarchical Mg-Al and Ni-Al layered double hydroxides for remarkably enhanced U(VI) management. Chem. Eng. J., 2019,359:1550-1562. |
[10] | YU SHU-JUN, LIU YUE, AI YUE-JIE , et al. Rational design of carbonaceous nanofiber/Ni-Al layered double hydroxide nanocomposites for high-efficiency removal of heavy metals from aqueous solutions. Environ. Pollut., 2018,242:1-11. |
[11] | WANG XIANG-XUE, CHEN LONG, WANG LIN , et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem., 2019,62(8):933-967. |
[12] | WANG HUI-HUI, GUO HAN, ZHANG NING , et al. Enhanced photoreduction of U(VI) on C3N4 by Cr(VI) and bisphenol A: ESR, XPS and EXAFS investigation. Environ. Sci. Technol., 2019,53(11):6454-6461. |
[13] | LI PING, WANG JING-JING, WANG YUN , et al. Photoconversion of U(VI) by TiO2: an efficient strategy for seawater uranium extraction. Chem. Eng. J., 2019,365:231-241. |
[14] | LEUPIN OX, HUG STEPHAN J . Oxidation and removal of arsenic (III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res., 2005,39(9):1729-1740. |
[15] | AKIN ILKER, ARSLAN GULSIN, TOR ALI , et al. Removal of arsenate [As(V)] and arsenite [As(III)] from water by SWHR and BW-30 reverse osmosis. Desalination, 2011,281:88-92. |
[16] | YANG SHU-BIN, OKADA NAOYA, NAGATSU MASAAKI . The highly effective removal of Cs + by low turbidity chitosan-grafted magnetic bentonite . J. Hazard. Mater., 2016,301:8-16. |
[17] | CHEN ZHONG-SHAN, WANG JIAN, PU ZENG-XIN , et al. Synthesis of magnetic Fe3O4/CFA composites for the efficient removal of U(VI) from wastewater. Chem. Eng. J., 2017,320:448-457. |
[18] | ZHANG SAI, LIU YANG, GU PENG-CHENG , et al. Enhanced photodegradation of toxic organic pollutants using dual-oxygen- doped porous g-C3N4: mechanism exploration from both experimental and DFT studies. Appl. Catal., B: Environ., 2019,248:1-10. |
[19] | LIU YUE, WU YI-HAN, PANG HONG-WEI , et al. Study on the removal of water pollutants by graphite phase carbon nitride materials. Prog. Chem., 2019,31(6):831-846. |
[20] | WANG NING, PANG HONG-WEO, YU SHU-JUN , et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium-a review. Acta Chim. Sin., 2019,77(2):143-152. |
[21] | LI ZHI-LI, GE YUAN-YUAN . Application of lignin and its derivatives in adsorption of heavy metal ions in water: a review. ACS Sustain. Chem. Eng., 2018,6(5):7181-7192. |
[22] | WEN TAO, WU XI-LIN, TAN XIAO-LI , et al. One-pot synthesis of water-swellable Mg-Al layered double hydroxides and graphene oxide nanocomposites for efficient removal of As(V) from aqueous solutions. ACS Appl. Mater. Interfaces, 2013,5(8):3304-3311. |
[23] | TAN XIAO-LI, FANG MING, REN XUE-MEI , et al. Effect of silicate on the formation and stability of Ni-Al LDH at the γ-Al2O3 surface. Environ. Sci. Technol., 2014,48(22):13138-13145. |
[24] | WU XI-LIN, TAN XIAO-LI, YANG SHI-TONG , et al. Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Res., 2013,47(12):4159-4168. |
[25] | WANG MENG-KE, ZHANG ZHAO-ZHU, LI YONG , et al. An eco-friendly one-step method to fabricate superhydrophobic nanoparticles with hierarchical architectures. Chem. Eng. J., 2017,327:530-538. |
[26] | YUSUF MOHAMMED, KHAN MOONIS-ALI, ABDULLAH E C , et al. Dodecyl sulfate chain anchored mesoporous graphene: synthesis and application to sequester heavy metal ions from aqueous phase. Chem. Eng. J., 2016,304:431-439. |
[27] | LI XING, LIU YANG, ZHANG CHEN-LU , et al. Porous Fe2O3 microcubes derived from metal organic frameworks for efficient elimination of organic pollutants and heavy metal ions. Chem. Eng. J., 2018,336:241-252. |
[28] | SU MIN-HUA TSANG DANIEL C W, REN XIN-YONG , et al. Removal of U(VI) from nuclear mining effluent by porous hydroxyapatite: evaluation on characteristics, mechanisms and performance. Environ. Pollut., 2019,254:112891. |
[29] | ISLAM MD-SHAHINUL, CHOI WON-SAN, NAM BORA , et al. Needle-like iron oxide@CaCO3 adsorbents for ultrafast removal of anionic and cationic heavy metal ions. Chem. Eng. J., 2017,307:208-219. |
[30] | WU YAN-HONG, CHEN DI-YUN, KONG LING-JUN , et al. Rapid and effective removal of uranium (VI) from aqueous solution by facile synthesized hierarchical hollow hydroxyapatite microspheres, J. Hazard. Mater., 2019,371:397-405. |
[31] | TAN JEANNIE-ZY, NURSAM NATALITA-M, XIA FANG , et al. High-performance coral reef-like carbon nitrides: synthesis and application in photocatalysis and heavy metal ion adsorption. ACS Appl. Mater. Interfaces, 2017,9(5):4540-4547. |
[32] | ZHANG CHEN-LU, LI XING, CHEN ZHONG-SHAN , et al. Synthesis of ordered mesoporous carbonaceous materials and their highly efficient capture of uranium from solutions. Sci. China Chem., 2018,61(3):281-293. |
[33] | WANG XIANG-XUE, YANG SHU-BIN, SHI WEI-QUN , et al. Different interaction mechanisms of Eu(III) and 243Am(III) with carbon nanotubes studied by batch, spectroscopy technique and theoretical calculation. Environ. Sci. Technol., 2015,49:11721-11728. |
[34] | MA XIN, YANG SHENG-TAO, TANG HUAN , et al. Competitive adsorption of heavy metal ions on carbon nanotubes and the desorption in simulated biofluids. J. Colloid Interface Sci., 2015,448:347-355. |
[35] | BOHLI THOURAYA, OUEDERNI ABDELMOTTALEB, FIOL NURIA , et al. Single and binary adsorption of some heavy metal ions from aqueous solutions by activated carbon derived from olive stones. Desalin. Water Treat., 2015,53(4):1082-1088. |
[36] | PANG JIN-SHAN, DENG AI-HUA, MAO LING-BO , et al. Adsorption of heavy metal ions by carbon-coated iron nanoparticles. New Carbon Mater., 2013,28(1):76-80. |
[37] | YU SHU-JUN, WEI DONG-LI, SHI LEI , et al. Three-dimensional graphene/titanium dioxide composite for enhanced U(VI) capture: insights from batch experiments, XPS spectroscopy and DFT calculation. Environ. Pollut., 2019,251:975-983. |
[38] | ONG WEE-JUN, TAN LLING-LLING, NG YUN-HAU , et al. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev., 2016,116(12):7159-7329. |
[39] | CAO SHAO-WEN, LOW JING-XIANG, YU JIA-GUO , et al. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater., 2015,27(13):2150-2176. |
[40] | DONG XIAO-PING, CHENG FU-XING . Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic application. J. Mater. Chem. A, 2015,3(47):23642-23652. |
[41] | ZHANG SAI, SONG SHUANG, GU PENG-CHENG , et al. Visible- light-driven activation of persulfate over cyano and hydroxyl groups co-modified mesoporous g-C3N4 for boosting bisphenol A degradation. J. Mater. Chem. A, 2019,7(10):5552-5560. |
[42] | WANG HUI-HUI, LI QIAN, ZHANG SAI , et al. Visible-light- driven N2-g-C3N4 as a high stable and efficient photocatalyst for bisphenol A and Cr(VI) removal in binary systems. Catal. Today, 2019,335:110-116. |
[43] | ZHANG SAI, GU PENG-CHENG, MA RAN , et al. Recent developments in fabrication and structure regulation of visible-light- driven g-C3N4-based photocatalysts towards water purification: a critical review. Catal. Today, 2019,335:65-77. |
[44] | NIU PING, ZHANG LI-LI, LIU GANG , et al. Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater., 2012,22(22):4763-4770. |
[45] | LIAO QING, PAN WANG, ZOU DONG-SHENG , et al. Using of g-C3N4 nanosheets for the highly efficient scavenging of heavy metals at environmental relevant concentrations. J. Mol. Liq., 2018,261:32-40. |
[46] | SHEN CONG-CONG, CHEN CHANG-LUN, WEN TAO , et al. Superior adsorption capacity of g-C3N4 for heavy metal ions from aqueous solutions. J. Colloid Interface Sci., 2015,456:7-14. |
[47] | LEE SUN-UK, JUN YONG-SI, LEE EUN-ZOO , et al. Selective silver ion adsorption onto mesoporous graphitic carbon nitride. Carbon, 2015,95:58-64. |
[48] | ZOU YI-DONG, WANG XIANG-XUE, AI YUE-JIE , et al. β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J. Mater. Chem. A, 2016,4(37):14170-14179. |
[49] | WANG PENG-YI, YIN LING, WANG JIAN , et al. Superior immobilization of U(VI) and 243Am(III) on polyethyleneimine modified lamellar carbon nitride composite from water environment. Chem. Eng. J., 2017,326:863-874. |
[50] | TENG ZHEN-YUAN, LÜ HONG-YING, WANG LUO-NA , et al. Voltammetric sensor modified by EDTA-immobilized graphene- like carbon nitride nanosheets: preparation, characterization and selective determination of ultra-trace Pb(II) in water samples. Electrochim. Acta, 2016,212:722-733. |
[51] | ANBIA M, HAQSHENAS M . Adsorption studies of Pb(II) and Cu(II) ions on mesoporous carbon nitride functionalized with melamine-based dendrimer amine. Int. J. Environ. Sci. Technol., 2015,12(8):2649-2664. |
[52] | LI XING, XING JIN-LU, ZHANG CHEN-LU , et al. Adsorption of lead on sulfur-doped graphitic carbonnitride nanosheets: experimental and theoretical calculation study. ACS Sustain. Chem. Eng., 2018,6(8):10606-10615. |
[53] | PENG DONG, JIANG WEI, LI FANG-FANG , et al. One-pot synthesis of boron carbon nitride nanosheets for facile and efficient heavy metal ions removal. ACS Sustain. Chem. Eng., 2018,6(9):11685-11694. |
[54] | GUO SHUANG-ZHEN, DUAN NING, DAN ZHI-GANG , et al. Three-dimensional magnetic graphitic carbon nitride composites as high-performance adsorbent for removal Pb 2+ from aqueous solution. J. Taiwan Inst. Chem. Eng., 2018,89:169-182. |
[55] | GUO SHUANG-ZHEN, ZHANG CHEN-MU, ZHANG FAN , et al. Synthesis of magnetic g-C3N4 by one-step method and its adsorption performance for Cd(II). IOP Conf. Ser.:Mater. Sci. Eng., 2017,274:012091 |
[56] | DENG XIAO-JIAO, LÜ LI-LI, LI HONG-WEI , et al. The adsorption properties of Pb(II) and Cd(II) on functionalized graphene prepared by electrolysis method. J. Hazard. Mater., 2010,183:923-930. |
[57] | CAI XING-GUO, HE JUN-YONG, CHEN LIANG , et al. A 2D-g-C3N4 nanosheet as an eco-friendly adsorbent for various environmental pollutants in water. Chemosphere, 2017,171:192-201. |
[58] | WANG XIN-CHEN, MAEDA KAZUHIKO, THOMAS ARNE , et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009,8(1):76-80. |
[59] | TAN GUANG-QUN, LI ZHAN-PENG, YUAN HONG-YAN , et al. Sorption of cadmium from aqueous solution with a highly effective sorbent-B-doped g-C3N4. Sep. Sci. Technol., 2014,49(10):1566-1573. |
[60] | SUN ZHE-HUA, CHEN DI-YUN, CHEN BAI-DI , et al. Enhanced uranium (VI) adsorption by chitosan modified phosphate rock. Colloid Surf. A-Physicochem. Eng. Asp., 2018,547:141-147. |
[61] | WU WAN-YING, CHEN DI-YUN, LI JIN-WEN , et al. Enhanced adsorption of uranium by modified red muds: adsorption behavior study. Environ. Sci. Pollut. Res., 2018,25(18):18096-18108. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 王世怡, 冯爱虎, 李晓燕, 于云. Fe3O4负载Ti3C2Tx对Pb(II)的吸附性能研究[J]. 无机材料学报, 2023, 38(5): 521-528. |
[7] | 郭春霞, 陈伟东, 闫淑芳, 赵学平, 杨傲, 马文. 埃洛石纳米管负载锆氧化物吸附水中砷的研究[J]. 无机材料学报, 2023, 38(5): 529-536. |
[8] | 马晓森, 张丽晨, 刘砚超, 汪全华, 郑家军, 李瑞丰. 13X@SiO2合成及其甲苯吸附性能[J]. 无机材料学报, 2023, 38(5): 537-543. |
[9] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[10] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[11] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[12] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[15] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||