无机材料学报 ›› 2020, Vol. 35 ›› Issue (4): 431-438.DOI: 10.15541/jim20190170
所属专题: 功能陶瓷论文精选(二)
收稿日期:
2019-04-22
修回日期:
2019-06-12
出版日期:
2020-04-20
网络出版日期:
2019-09-12
作者简介:
王 通(1985-), 男, 讲师. E-mail: andyton85@163.com
基金资助:
WANG Tong1,WANG Yuanhao1,YANG Haibo1(),GAO Shuya1,WANG Fen1,LU Yawen2
Received:
2019-04-22
Revised:
2019-06-12
Published:
2020-04-20
Online:
2019-09-12
Supported by:
摘要:
采用固相法制备(1-x)BaTiO3-xZnNb2O6 (x=0.5mol%, 1mol%, 1.5mol%, 2mol%, 3mol%, 4mol%) (简称BTZN)陶瓷, 研究了BTZN陶瓷的烧结温度、结构、介电性能和铁电性能。BTZN陶瓷烧结温度随着ZnNb2O6含量增加逐渐降低。XRD结果表明当ZnNb2O6含量达到3mol%时出现第二相Ba2Ti5O12。介电测试结果表明随ZnNb2O6含量的增加, BTZN陶瓷介电常数逐渐减小, 而介电常数的频率稳定性逐渐增强。介电温谱表明所有BTZN陶瓷均符合X8R电容器标准。BTZN陶瓷的极化强度值随着ZnNb2O6含量的增加逐渐降低。当x=4mol%时, BTZN陶瓷获得240 kV/cm的击穿电场和1.22 J/cm 3的可释放能量密度。
中图分类号:
王通,王渊浩,杨海波,高淑雅,王芬,鲁雅文. BaTiO3-ZnNb2O6陶瓷介电及储能性能研究[J]. 无机材料学报, 2020, 35(4): 431-438.
WANG Tong,WANG Yuanhao,YANG Haibo,GAO Shuya,WANG Fen,LU Yawen. Dielectric and Energy Storage Property of BaTiO3-ZnNb2O6 Ceramics[J]. Journal of Inorganic Materials, 2020, 35(4): 431-438.
图1 BTZN陶瓷不同烧结温度的密度, 插图为不同ZN含量BTZN陶瓷最佳烧结温度和密度
Fig. 1 Density as a function of sintering temperature for BTZN ceramics with inset showing the optimum sintering temperature and density of BTZN ceramics with different ZN content
图4 BTZN陶瓷的介电性能频率稳定性
Fig. 4 Frequency stability of dielectric properties for BTZN ceramic (a) Frequency dependence of dielectric constant (lines are linear fitting results) with inset showing the fitting values of a and b with different ZN content, and (b) frequency dependence of dielectric loss, (c) FCC, and (d) FCC as a function of ZN content
图5 BTZN陶瓷-100~500 ℃的介电常数和介电损耗
Fig. 5 Temperature dependence of dielectric constant and loss of BTZN ceramics from -100 ℃ to 500 ℃ (a)BTZN1; (b) BTZN2; (c) BTZN3; (d) BTZN4; (e) BTZN5; (f) BTZN6
图7 BTZN陶瓷击穿电场下室温电滞回线(10 Hz), 箭头方向为ZN含量增大方向, 插图为不同ZN含量BTZN陶瓷BDS
Fig. 7 P-E loops of BTZN ceramics at critical electric field, room temperature and 10 Hz with direction of the arrow indicating the direction in which the ZN content increases with inset showing the BDS of BTZN ceramics with different ZN contents
图8 BTZN陶瓷储能性能
Fig. 8 Energy storage properties of BTZN ceramics Pmax, Pr and Pmax-Pr of BTZN ceramics at 100 kV/cm; (b) Energy storage density (W); (c) Recoverable energy storage density (Wrec); (d) Energy loss density (Wloss); (e) Energy storage efficiency (η) as a function of electric field; (f) Variations of W, Wrec, Wloss and η at critical electric field with different ZN contents
[1] | ACOSTA M, NOVAK N, ROJAS V , et al. BaTiO3-based piezoelectrics: fundamentals, current status, and perspectives. Appl. Phys. Rev., 2017,4(4):041305. |
[2] | HENNINGS D, ROSENSTEIN G . Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3. J. Am. Ceram. Soc., 1984,67(4):249-254. |
[3] | JIANG X W, HAO H, ZHANG S J , et al. Enhanced energy storage and fast discharge properties of BaTiO3 based ceramics modified by Bi(Mg1/2Zr1/2)O3. J. Eur. Ceram. Soc., 2019,39(4):1103-1109. |
[4] | HUANG Y A, LU B, YI X Z , et al. Grain size effect on dielectric, piezoelectric and ferroelectric property of BaTiO3 ceramics with fine grains. J. Inorg. Mater., 2018,33(7):767-772. |
[5] | GHAYOUR H, ABDELLAHI M . A brief review of the effect of grain size variation on the electrical properties of BaTiO3-based ceramics. Powder Technol., 2016,292:84-93. |
[6] | ZEB A, MILNE S J . Temperature-stable dielectric properties from -20 ℃ to 430 ℃ in the system BaTiO3-Bi(Mg0.5Zr0.5)O3. J. Eur. Ceram. Soc., 2014,34(13):3159-3166. |
[7] | DAMJANOVIC D . Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys., 1998,61(9):1267-1324. |
[8] | GUO F Q, ZHANG B H, FAN Z X , et al. Grain size effects on piezoelectric properties of BaTiO3 ceramics prepared by spark plasma sintering. J. Mater. Sci.: Mater. Electron., 2016,27(6):5967-5971. |
[9] | YUAN Q B, LI G, YAO F Z , et al. Simultaneously achieved temperature- insensitive high energy density and efficiency in domain engineered BaTiO3-Bi(Mg0.5Zr0.5)O3 lead-free relaxor ferroelectrics. Nano Energy, 2018,52:203-210. |
[10] | HAO X H . A review on the dielectric materials for high energy- storage application. J. Adv. Dielect., 2013,03(1):1330001. |
[11] | DU H L, YANG Z T, GAO F , et al. Lead-free nonlinear dielectric ceramics for energy storage applications: current status and challenges. J. Inorg. Mater., 2018,33(10):1046-1058. |
[12] | YANG L T, KONG X, LI F , et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater Sci., 2019,102:72-108. |
[13] | YAN F, YANG H B, LIN Y , et al. Dielectric and ferroelectric properties of SrTiO3-Bi0.5Na0.5TiO3-BaAl0.5Nb0.5O3 lead-free ceramics for high-energy-storage applications. Inorg. Chem., 2017,56(21):13510-13516. |
[14] | YANG H B, YAN F, LIN Y , et al. Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustainable Chem. Eng., 2017,5(11):10215-10222. |
[15] | YANG H B, YAN F, LIN Y , et al. Lead-free BaTiO3- Bi0.5Na0.5TiO3-Na0.73Bi0.09NbO3 relaxor ferroelectric ceramics for high energy storage. J. Eur. Ceram. Soc., 2017,37(10):3303-3311. |
[16] | YAN F, YANG H B, YING L , et al. Enhanced energy storage properties of a novel lead-free ceramic with a multilayer structure. J. Mater. Chem. C, 2018,6(29):7905-7912. |
[17] | LIU X Y, YANG H B, YAN F , et al. Enhanced energy storage properties of BaTiO3-Bi0.5Na0.5TiO3 lead-free ceramics modified by SrY0.5Nb0.5O3. J. Alloys Compd., 2019,778:97-104. |
[18] | YANG H B, LIU P F, YAN F , et al. A novel lead-free ceramic with layered structure for high energy storage applications. J. Alloys Compd., 2019,773:244-249. |
[19] | YANG Z T, GAO F, DU H L , et al. Grain size engineered lead-free ceramics with both large energy storage density and ultrahigh mechanical properties. Nano Energy, 2019,58:768-777. |
[20] | WANG T, JIN L, TIAN Y , et al. Microstructure and ferroelectric properties of Nb2O5-modified BiFeO3-BaTiO3 lead-free ceramics for energy storage. Mater. Lett., 2014,137:79-81. |
[21] | JIN L, LI F, ZHANG S J . Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc., 2014,97(1):1-27. |
[22] | WANG T, HU J C, YANG H B , et al. Dielectric relaxation and Maxwell-Wagner interface polarization in Nb2O5 doped 0.65BiFeO3-0.35BaTiO3 ceramics. J. Appl. Phys., 2017,121(8):084103. |
[23] | HUANG Y H, WU Y J, LI J , et al. Enhanced energy storage properties of barium strontium titanate ceramics prepared by Sol-Gel method and spark plasma sintering. J. Alloys Compd., 2017,701:439-446. |
[24] | PULI V S, PRADHAN D K, CHRISEY D B , et al. Structure, dielectric, ferroelectric, and energy density properties of (1-x)BZT-xBCT ceramic capacitors for energy storage applications. J. Mater. Sci., 2012,48(5):2151-2157. |
[25] | SUN Z, LI L X, YU S H , et al. Energy storage properties and relaxor behavior of lead-free Ba1-xSm2x/3Zr0.15Ti0.85O3 ceramics. Dalton Trans., 2017,46(41):14341-14347. |
[26] | WANG T, JIN L, LI C C , et al. Relaxor ferroelectric BaTiO3- Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc., 2015,98(2):559-566. |
[27] | HU Q Y, JIN L, WANG T , et al. Dielectric and temperature stable energy storage properties of 0.88BaTiO3-0.12Bi(Mg1/2Ti1/2)O3 bulk ceramics. J. Alloys Compd., 2015,640:416-420. |
[28] | YUAN Q B, YAO F Z, WANG Y F , et al. Relaxor ferroelectric 0.9BaTiO3-0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C, 2017,5(37):9552-9558. |
[29] | LI W B, ZHOU D, PANG L X , et al. Novel barium titanate based capacitors with high energy density and fast discharge performance. J. Mater. Chem. A, 2017,5(37):19607-19612. |
[30] | WANG X R, ZHANG Y, SONG X Z , et al. Glass additive in barium titanate ceramics and its influence on electrical breakdown strength in relation with energy storage properties. J. Eur. Ceram. Soc., 2012,32(3):559-567. |
[31] | WANG T, JIN L, SHU L L , et al. Energy storage properties in Ba0.4Sr0.6TiO3 ceramics with addition of semi-conductive BaO-B2O3-SiO2-Na2CO3-K2CO3 glass. J. Alloys Compd., 2014,617:399-403. |
[32] | YANG H B, YAN F, LIN Y , et al. Enhanced energy storage properties of Ba0.4Sr0.6TiO3 lead-free ceramics with Bi2O3-B2O3-SiO2 glass addition. J. Eur. Ceram. Soc., 2018,38(4):1367-1373. |
[33] | YANG H B, YAN F, ZHANG G , et al. Dielectric behavior and impedance spectroscopy of lead-free Ba0.85Ca0.15Zr0.1Ti0.9O3 ceramics with B2O3-Al2O3-SiO2 glass-ceramics addition for enhanced energy storage. J. Alloys Compd., 2017,720:116-125. |
[34] | WU T, PU Y P, CHEN K . Dielectric relaxation behavior and energy storage properties in Ba0.4Sr0.6Zr0.15Ti0.85O3 ceramics with glass additives. Ceram. Int., 2013,39(6):6787-6793. |
[35] | WANG T, WANG Y H, YANG H B , et al. Structure, dielectric properties of low-temperature-sintering BaTiO3-based glass-ceramics for energy storage. J. Adv. Dielect., 2018,8(6):1850041. |
[36] | GAO F, LIU J J, HONG R Z , et al. Microstructure and dielectric properties of low temperature sintered ZnNb2O6 microwave ceramics. Ceram. Int., 2009,35(7):2687-2692. |
[37] | WANG T, WEI X Y, HU Q Y , et al. Effects of ZnNb2O6 addition on BaTiO3 ceramics for energy storage. Mater. Sci. Eng. B, 2013,178(16):1081-1086. |
[38] | YAN Y, NING C, JIN Z Z , et al. The dielectric properties and microstructure of BaTiO3 ceramics with ZnO-Nb2O5 composite addition. J. Alloys Compd., 2015,646:748-752. |
[39] | YANG Y, LIU K H, LIU X K , et al. Electrical properties and microstructures of (Zn and Nb) co-doped BaTiO3 ceramics prepared by microwave sintering. Ceram. Int., 2016,42(6):7877-7882. |
[40] | SPAGNOL P D, VARELA J A, ZAGHETE M A , et al. Evidence of hetero-epitaxial growth of Pb(Mg1/3Nb2/3)O3 on the BaTiO3 seed particles of a citrate solution. Mater. Chem. Phys., 2002,77(3):918-923. |
[41] | YANG H B, YAN F, LIN Y , et al. Enhanced energy-storage properties of lanthanum-doped Bi0.5Na0.5TiO3-based lead-free ceramics. Energy Technol., 2018,6(2):357-365. |
[42] | JIA W X, HOU Y D, ZHENG M P , et al. Superior temperature- stable dielectrics for MLCCs based on Bi0.5Na0.5TiO3-NaNbO3 system modified by CaZrO3. J. Am. Ceram. Soc., 2018,101(8):3468-3479. |
[43] | SUN Y, LIU H, HAO H , et al. Structure property relationship in BaTiO3-Na0.5Bi0.5TiO3-Nb2O5-NiO X8R system. J. Am. Ceram. Soc., 2015,98(5):1574-1579. |
[1] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[2] | 罗淑文, 马名生, 刘峰, 刘志甫. Ca-B-Si体系LTCC材料腐蚀行为及腐蚀机理[J]. 无机材料学报, 2023, 38(5): 553-560. |
[3] | 吴俊林, 丁继扬, 黄新友, 朱丹阳, 黄东, 代正发, 杨文钦, 蒋兴奋, 周健荣, 孙志嘉, 李江. Gd2O2S:Tb闪烁陶瓷的制备与结构: 水浴合成中H2SO4/Gd2O3摩尔比的影响[J]. 无机材料学报, 2023, 38(4): 452-460. |
[4] | 孙敬伟, 王洪磊, 孙楚函, 周新贵, 纪小宇. 碳源对先驱体转化法制备TaC陶瓷粉体微观结构及性能影响[J]. 无机材料学报, 2023, 38(2): 184-192. |
[5] | 靳喜海, 董满江, 阚艳梅, 梁波, 董绍明. 透明AlON陶瓷凝胶浇注成型及其无压烧结制备[J]. 无机材料学报, 2023, 38(2): 193-198. |
[6] | 陈雷, 胡海龙. 柔性PDMS基介电复合材料的电场及击穿损伤形貌演变规律研究[J]. 无机材料学报, 2023, 38(2): 155-162. |
[7] | 冯静静, 章游然, 马名生, 陆毅青, 刘志甫. 冷烧结技术的研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 125-136. |
[8] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
[9] | 李文俊, 王皓, 涂兵田, 谌强国, 郑凯平, 王为民, 傅正义. 宽光谱透过Mg0.9Al2.08O3.97N0.03透明陶瓷的制备与性能研究[J]. 无机材料学报, 2022, 37(9): 969-975. |
[10] | 母利成, 杨金萍, 王俊平, 赵瑾, 刘梦玮, 汪德文, 章健. 环氧树脂改性自发凝固成型制备YAG透明陶瓷[J]. 无机材料学报, 2022, 37(9): 941-946. |
[11] | 盛丽丽, 常江. 光/磁热Fe2SiO4/Fe3O4双相生物陶瓷及其复合电纺丝膜制备及抗菌性能研究[J]. 无机材料学报, 2022, 37(9): 983-990. |
[12] | 陈勇强, 王怡雪, 张帆, 李红霞, 董宾宾, 闵志宇, 张锐. 微波加热制备特种陶瓷材料研究进展[J]. 无机材料学报, 2022, 37(8): 841-852. |
[13] | 王士维. 基于疏水作用的陶瓷浆料自发凝固成型研究进展[J]. 无机材料学报, 2022, 37(8): 809-820. |
[14] | 刘强, 王倩, 陈鹏辉, 李晓英, 章立轩, 谢腾飞, 李江. 两步烧结法制备红色Ce:8YSZ透明陶瓷及其性能研究[J]. 无机材料学报, 2022, 37(8): 911-917. |
[15] | 韦婷婷, 徐华蕊, 朱归胜, 龙神峰, 张秀云, 赵昀云, 江旭鹏, 宋金杰, 郭宁杰, 龚祎鹏. BaTiO3陶瓷的低温冷烧结制备及性能研究[J]. 无机材料学报, 2022, 37(8): 903-910. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||