无机材料学报 ›› 2020, Vol. 35 ›› Issue (3): 359-366.DOI: 10.15541/jim20190336

所属专题: 2020年环境材料论文精选(一)放射性元素去除 【虚拟专辑】放射性污染物去除(2020~2021)

• 研究论文 • 上一篇    下一篇

三维大孔g-C3N4吸附和光催化还原U(VI)性能研究

蒋丽1,高慧慧1,曹茹雅1,2,张守伟1(),李家星2()   

  1. 1. 济南大学 物理科学与技术学院, 济南 250022
    2. 中国科学院 等离子体物理研究所, 合肥 230031
  • 收稿日期:2019-07-05 修回日期:2019-08-07 出版日期:2020-03-20 网络出版日期:2019-09-04
  • 作者简介:蒋 丽(1997-), 女, 学士. E-mail: ax459684525@163.com
  • 基金资助:
    国家自然科学基金(21707043);国家自然科学基金(21876178);国家自然科学基金(21677146);山东省自然科学基金(ZR2017BEE005)

Construction of Novel Three Dimensionally Macroporous g-C3N4 for Efficient Adsorption/Photocatalytic Reduction of U(VI)

JIANG Li1,GAO Huihui1,CAO Ruya1,2,ZHANG Shouwei1(),LI Jiaxing2()   

  1. 1. School of Physics and Technology, University of Jinan, Jinan 250022, China
    2. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
  • Received:2019-07-05 Revised:2019-08-07 Published:2020-03-20 Online:2019-09-04
  • About author:JIANG Li, female, Bachelor. E-mail: ax459684525@163.com
  • Supported by:
    National Natural Science Foundation of China(21707043);National Natural Science Foundation of China(21876178);National Natural Science Foundation of China(21677146);Natural Science Foundation of Shandong Province(ZR2017BEE005)

摘要:

将易溶的U(VI)还原为微溶的U(IV)是治理放射性铀污染的有效方法。本研究以SiO2纳米球作为硬模板, 通过热聚合-刻蚀制备具有连续贯通的三维大孔g-C3N4光催化剂, 用于吸附-光催化还原U(VI)。材料表征结果显示: 三维大孔g-C3N4比表面积显著增加, 对可见光的吸收明显增强; 同时具有三维有序大孔结构, 并呈规则的紧密堆积结构, 孔壁完整多孔, 整个结构具有良好的三维连通性。吸附实验表明: 三维大孔g-C3N4对U(VI)最大吸附容量可达~30.5 mg/g, 该过程更符合Langmuir吸附模型, 与块体g-C3N4相比吸附容量提高了~1.83倍。光催化还原实验表明: 三维大孔g-C3N4具有高的光催化活性和良好的稳定性, 其还原反应速率常数为~0.0142 min -1, 是块体g-C3N4 (~0.0024 min -1)的~5.9倍。鉴于三维大孔g-C3N4具有较优异的吸附-催化还原性能, 该材料有望应用于放射性废水中U(VI)的快速高效清除。

关键词: 三维大孔g-C3N4, U(VI), 吸附, 光催化还原

Abstract:

Reduction of soluble U(VI) to insoluble U(IV) oxide is an effective approach to control uranium contamination. Three-dimensional (3D) macroporous g-C3N4 photocatalyst with interconnected porous was prepared by thermal polymerization and template etching using self-assembly of SiO2 nanosphere as the template. The material was then applied to adsorption-photocatalytic reduction of U(VI). Characterization results showed that the 3D macroporous g-C3N4 photocatalyst presented a well-defined interconnected macroporous architecture and numerous nanopores existed on the well-defined macroporous skeleton. 3D macroporous g-C3N4 also had a significant increase in specific surface area which was beneficial to the absorption of visible light. Adsorption results showed that the maximum adsorption capacity of U(VI) on 3D macroporous g-C3N4 was ~30.5 mg/g, which was more than ~1.83 times higher than that of bulk g-C3N4. The adsorption isotherm matched well with the Langumuir equation. Photocatalytic reduction experiments showed that the 3D macroporous g-C3N4 had high photocatalytic activity and good stability with the reduction rate constant of 0.0142 min -1, which was ~4.9 times higher than bulk g-C3N4 (~0.0024 min -1). As the sorption-photocatalytic performance of the sample is excellent, 3D macroporous g-C3N4 is a high efficient visible-light-responsive photocatalyst for the removal of U(VI) from radioactive wastewater.

Key words: 3D macroporous g-C3N4, U(VI), adsorption, photocatalytic reduction

中图分类号: