[1] |
ZHANG H L, LONG H M, LI J X , et al. Research progress in iron-based catalysts for the selective catalytic reduction of NOx by NH3. Chinese J. Inorg. Chem., 2019,35(5):753-768.
|
[2] |
ZHENG Y J, JENSEN A D, JOHNSSON J E . Deactivation of V2O5-WO3-TiO2 SCR catalyst at a biomass-fired combined heat and power plant. Appl. Catal. B-Environ., 2005,60(3/4):253-264.
DOI
URL
PMID
|
[3] |
JI J H, CHANG H Z, MA L , et al. Low-temperature selective catalytic reduction of NOx with NH3 over metal oxide and zeolite catalysts—a review. Catal. Today, 2011,175(1):147-156.
|
[4] |
CHEN J, ZHENG Y Y, ZHANG Y B , et al. Preparation of MnO2/ MWCNTs catalysts by a redox method and their activity in low- temperature SCR. Chinese J. Inorg. Chem., 2016,31(12):1347-1354.
|
[5] |
YOU X C, SHENG Z Y, YU D Y , et al. Influence of Mn/Ce ratio on the physicochemical properties and catalytic performance of graphene supported MnOx-CeO2 oxides for NH3-SCR at low temperature. Appl. Surf. Sci., 2017,423:845-854.
|
[6] |
CHEN H P, QI X, LIANG Y H , et al. Effect of Fe reduced-modifcation on TiO2 supported Fe-Mn catalyst for NO removal by NH3 at low temperature. React. Kinet. Mech. Catal., 2019,126(1):327-339.
|
[7] |
GONG P J, XIE J L, FANG D , et al. Effects of surface physicochemical properties on NH3-SCR activity of MnO2 catalysts with different crystal structures. Chinese J. Catal., 2017,38(11):1925-1934.
|
[8] |
WANG F M, SHEN B X, ZHU S W , et al. Promotion of Fe and Co doped Mn-Ce/TiO2 catalysts for low temperature NH3-SCR with SO2 tolerance. Fuel, 2019,249:54-60.
|
[9] |
FANG D, HE F, LIU X Q , et al. Low temperature NH3-SCR of NO over an unexpected Mn-based catalyst: Promotional effect of Mg doping. Appl. Surf. Sci., 2018,427(B):45-55.
|
[10] |
YANG Y R, WANG M H, TAO Z L , et al. Mesoporous Mn-Ti amorphous oxides: a robust low-temperature NH3-SCR catalyst. Catal. Sci. Technol., 2018,8(24):6396-6406.
|
[11] |
XIONG Z B, WU C, HU Q , et al. Promotional effect of microwave hydrothermal treatment on the low-temperature NH3-SCR activity over iron-based catalyst. Chem. Eng. J., 2016,286:459-466.
|
[12] |
DU T Y, QU H X, LIU Q , et al. Synthesis, activity and hydrophobicity of Fe-ZSM-5@silicalite-1 for NH3-SCR. Chem. Eng. J., 2015,262:1199-1207.
|
[13] |
GAO F, KOLLAR M, KUKKADAPU R K , et al. Fe/SSZ-13 as an NH3-SCR catalyst: A reaction kinetics and FTIR/Mössbauer spectroscopic study. Appl. Catal. B-Environ., 2015,164:407-419.
|
[14] |
LIU Z M, SU H, CHEN B H , et al. Activity enhancement of WO3 modified Fe2O3 catalyst for the selective catalytic reduction of NOx by NH3. Chem. Eng. J., 2016,299:255-262.
|
[15] |
LIU F D, SHAN W P, LIAN Z H , et al. The smart surface modification of Fe2O3 by WOx for significantly promoting the selective catalytic reduction of NOx with NH3. Appl. Catal. B-Environ., 2018,230:165-176.
DOI
URL
|
[16] |
HUANG J, TONG Z, HUANG Y , et al. Selective catalytic reduction of NO with NH3 at low temperatures over iron and manganese oxides supported on mesoporous silica. Appl. Catal. B-Environ., 2008,78(3/4):309-314.
|
[17] |
YANG S J, XIONG S C, LIAO Y , et al. Mechanism of N2O formation during the low-temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Environ. Sci. Technol., 2014,48(17):10354-10362.
DOI
URL
PMID
|
[18] |
CHEN Z H, WANG F R, LI H , et al. Low-temperature selective catalytic reduction of NOx with NH3 over Fe-Mn mixed-oxide catalysts containing Fe3Mn3O8 phase. Int. Eng. Chem. Res., 2012,51(1):202-212.
|
[19] |
XIONG S C, LIAO Y, XIAO X , et al. The mechanism of the effect of H2O on the low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel. Catal. Sci. Technol., 2015,5(4):2132-2140.
|
[20] |
JIANG B Q, WU Z B, LIU Y , et al. DRIFT Study of the SO2 effect on low-temperature SCR reaction over Fe-Mn/TiO2. J. Phys. Chem. C, 2010,114(11):4961-4965.
|
[21] |
JIN R B, LIU Y, WU Z B , et al. Relationship between SO2 poisoning effects and reaction temperature for selective catalytic reduction of NO over Mn-Ce/TiO2 catalyst. Catal. Today, 2010,153(3/4):84-89.
|
[22] |
TANG C J, ZHANG H L, DONG L . Ceria-based catalysts for low- temperature selective catalytic reduction of NO with NH3. Catal. Sci. Technol., 2016,6(5):1248-1264.
DOI
URL
PMID
|
[23] |
LI J, PAN L, WANG J T , et al. Low-temperature removal of NO by spherical activated carbon loaded with MnOx-CeO2 and melamine. Chinese J. Inorg. Mater., 2016,31(11):1205-1211.
|
[24] |
ZHAO K, HAN W L, LU G X , et al. Promotion of redox and stability features of doped Ce-W-Ti for NH3-SCR reaction over a wide temperature range. Appl. Surf. Sci., 2016,379:316-322.
|
[25] |
MA Z R, WENG D, WU X D , et al. A novel Nb-Ce/WOx-TiO2 catalyst with high NH3-SCR activity and stability. Catal. Commun., 2012,27:97-100.
|
[26] |
CHANG H Z, CHEN X Y, LI J H , et al. Improvement of activity and SO2 tolerance of Sn-modified MnOx-CeO2 catalysts for NH3- SCR at low temperatures. Environ. Sci. Technol., 2013,47(10):5294-5301.
DOI
URL
PMID
|
[27] |
HUANG X B, LIU L P, GAO H Y , et al. Hierarchically nanostructured MnCo2O4 as active catalysts for the synthesis of N-benzylideneaniline from benzyl alcohol and aniline. Green Chem., 2017,19(3):769-777.
|
[28] |
FRANCE L J, YANG Q, LI W , et al. Ceria modified FeMnOx —Enhanced performance and sulphur resistance for low-temperature SCR of NOx. Appl. Catal. B-Environ., 2017,206:203-215.
|
[29] |
SUN M, LAN B, YU L , et al. Manganese oxides with different crystalline structures: Facile hydrothermal synthesis and catalytic activities. Mater. Lett., 2012,86:18-20.
|
[30] |
HUANG X B, ZHENG H Y, LU G L , et al. Enhanced water splitting electrocatalysis over MnCo2O4 via introduction of suitable Ce content. ACS Sustainable Chem. Eng., 2019,7(1):1169-1177.
|
[31] |
HUANG X B, WANG P, ZHANG H , et al. CeO2-δ-modified CuFe2O4 with enhanced oxygen transfer as efficient catalysts for selective oxidation of fluorene under mild conditions. Eur. J. Inorg. Chem., 2019,2019(1):91-97.
|
[32] |
XU L, LI X S, CROCKER M , et al. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2. J. Mol. Catal. A-Chem., 2013,378:82-90.
|