无机材料学报 ›› 2020, Vol. 35 ›› Issue (2): 217-223.DOI: 10.15541/jim20190157
所属专题: 2020年能源材料论文精选(二):超级电容器; 【虚拟专辑】电致变色与热致变色材料; 【虚拟专辑】超级电容器(2020~2021)
收稿日期:
2019-04-15
修回日期:
2019-07-12
出版日期:
2020-02-20
网络出版日期:
2019-09-04
作者简介:
陈 钧(1992-), 男, 硕士研究生. E-mail: 1192759665@qq.com
基金资助:
CHEN Jun1,MA Pei-Hua2,ZHANG Cheng1,Laurent RUHLMANN3,LYU Yao-Kang1()
Received:
2019-04-15
Revised:
2019-07-12
Published:
2020-02-20
Online:
2019-09-04
Supported by:
摘要:
将铈钛氧簇[Ti8O7(HOEt)(OEt)21Ce]和PEDOT低聚物的混合溶液通过滴涂-二次聚合成膜制得一种表面具有特殊纳米沟壑结构的无机/有机复合薄膜PEDOT:Ce@TiO2。PEDOT:Ce@TiO2具有很强的疏水性和对乙腈溶液较好的润湿性, 能用作阴极电致变色材料和超级电容器电极材料。PEDOT:Ce@TiO2展现出较PEDOT薄膜更优良的电化学性能, 在电流密度为1 A/g时, PEDOT:Ce@TiO2的质量比电容为71.2 F/g, 是相同条件下PEDOT薄膜的质量比电容的1.7倍。采用PEDOT:Ce@TiO2进一步组装了全固态电致变色超级电容器原型器件, 当充电完成时器件的变色区域呈现墨绿色, 当放电完成时器件的变色区域呈现亮黄色。
中图分类号:
陈钧,马培华,张诚,劳伦·鲁尔曼,吕耀康. 新型多功能无机/有机复合薄膜的制备及电化学性能研究[J]. 无机材料学报, 2020, 35(2): 217-223.
CHEN Jun,MA Pei-Hua,ZHANG Cheng,Laurent RUHLMANN,LYU Yao-Kang. Preparation and Electrochemical Property of New Multifunctional Inorganic/Organic Composite Film[J]. Journal of Inorganic Materials, 2020, 35(2): 217-223.
图2 PEDOT薄膜的(a)SEM照片、(b)AFM二维高度图、(c)AFM二维相图和PEDOT:Ce@TiO2薄膜的(d)SEM照片、(e)AFM二维高度图、(f)AFM二维相图
Fig. 2 (a) SEM image, (b) AFM height sensor image (2D), (c) AFM tapping phase image (2D) of PEDOT film, and (d) SEM image, (e) AFM height sensor image (2D), (f) AFM tapping phase image (2D) of PEDOT:Ce@TiO2 film
图4 PEDOT薄膜(a)和PEDOT:Ce@TiO2薄膜(c)的水滴接触角照片; PEDOT薄膜(b)和PEDOT:Ce@TiO2薄膜(d)的乙腈液滴接触角照片
Fig. 4 Images of water droplets on the surfaces of PEDOT film (a) and PEDOT:Ce@TiO2 film (c), and images of ACN droplets on the surfaces of PEDOT film (b) and PEDOT: Ce@TiO2 film (d)
图5 (a) PEDOT和(b) PEDOT:Ce@TiO2的循环伏安曲线; (c) PEDOT和(d) PEDOT:Ce@TiO2的恒流充放电曲线
Fig. 5 CV curves of (a) PEDOT and (b) PEDOT:Ce@TiO2; Galvanostatic charge/discharge curves of (c) PEDOT and (d) PEDOT:Ce@TiO2
图6 (a)电致变色超级电容器的结构示意图, (b) 恒流充放电曲线以及充电完成时和放电完成时的照片
Fig. 6 (a) Schematic, (b) galvanostatic charge/discharge curves of electrochromic supercapacitor, and optical photos under the completing of charging and discharging.
图S2 (a) PEDOT低聚物, (b) 铈钛氧簇[Ti8O7(HOEt)(OEt)21Ce], (c) 铈钛氧簇[Ti8O7(HOEt)(OEt)21Ce]和PEDOT的DCM溶液, (d) PEDOT薄膜(e) PEDOT: Ce@TiO2薄膜的照片
Fig. S2 Photographs of solution of PEDOT oligomer in DCM, (b) solution of polyoxotitanate cluster [Ti8O7(HOEt)(OEt)21Ce] in DCM, (c) mixture solution of PEDOT and polyoxotitanate cluster [Ti8O7(HOEt)(OEt)21Ce] in DCM, (d) PEDOT film (e) PEDOT: Ce@TiO2 film.
Film | C/wt% | O/wt% | S/wt% | Ti/wt% | Ce/wt% |
---|---|---|---|---|---|
PEDOT | 62.38 | 20.13 | 17.49 | — | — |
PEDOT: Ce@TiO2 | 60.01 | 18.26 | 15.91 | 3.18 | 2.01 |
表S1 PEDOT和PEDOT:Ce@TiO2薄膜中碳, 氧, 硫, 钛和铈原子的元素质量百分比
Table S1 Mass percentages of the carbon, oxygen, sulfur, titanium and cerium atoms in PEDOT and PEDOT: Ce@TiO2 film
Film | C/wt% | O/wt% | S/wt% | Ti/wt% | Ce/wt% |
---|---|---|---|---|---|
PEDOT | 62.38 | 20.13 | 17.49 | — | — |
PEDOT: Ce@TiO2 | 60.01 | 18.26 | 15.91 | 3.18 | 2.01 |
图S7 (a) PEDOT薄膜的AFM二维高度图, (b) AFM三维高度图; (c) PEDOT:Ce@TiO2薄膜的AFM二维高度图, (d) AFM三维高度图
Fig. S7 (a) AFM height sensor image (2D), (b) AFM height sensor image (3D) of PEDOT film; (c) AFM height sensor image (2D), (d) AFM height sensor image (3D) of PEDOT:Ce@TiO2 film
图S8 在扫描速率100 mV/s下PEDOT和PEDOT:Ce@TiO2薄膜在0.1 mol·L-1 LiClO4/ACN溶液中的循环伏安曲线
Fig. S8 Cyclic voltammetry curves of PEDOT and PEDOT:Ce@TiO2 films in 0.1 mol/L LiClO4/ACN at scan rate of 100 mV/s
图S9 (a) PEDOT和(b) PEDOT:Ce@TiO2薄膜在不同电压下的紫外-可见光谱图和光学照片(插图)
Fig. S9 UV-Vis spectra and optical photos (inserts) of films under different potentialaption (a) PEDOT; (b) PEDOT:Ce@TiO2
图S10 (a) PEDOT和PEDOT:Ce@TiO2的交流阻抗曲线; (b) 不同充放电电流密度下PEDOT和PEDOT:Ce@TiO2薄膜的质量比容量
Fig. S10 (a) Nyquist plots of the impedance spectra of PEDOT and PEDOT: Ce@TiO2; (b) Specific capacitance calculated from discharge curves of PEDOT and PEDOT: Ce@TiO2 films
图S11 (a) PEDOT和(b) PEDOT:Ce@TiO2薄膜在电流密度为1 A/g时的充放电循环稳定性
Fig. S11 Cycling performance of PEDOT (a) and PEDOT:Ce@TiO2 (b) film measured by charging and discharging it at 1 A/g
[1] | SANTINA L M, ACHARYA S, D’ARCY J M . Low-temperature vapour phase polymerized polypyrrole nanobrushes for supercapacitors. J. Mater. Chem. A, 2017,5:11772-11780. |
[2] | YU C, WANG Y, CUI J , et al. Recent advances in the multi- modification of TiO2 nanotube arrays and their application in supercapacitors. Acta Phys. -Chim. Sin., 2017,33(10):1944-1959. |
[3] | HUANG Y, LIANG J, CHEN Y . An overview of the applications of graphene-based materials in supercapacitors. Small, 2012,8(12):1805-1834. |
[4] | WANG K, WU H, MENG Y , et al. Conducting polymer nanowire arrays for high performance supercapacitors. Small, 2014,10(1):14-31. |
[5] | HOLZE R, WU Y P . Intrinsically conducting polymers in electrochemical energy technology: trends and progress. Electrochim. Acta, 2014,122(9):93-107. |
[6] | LIU H, ZHOU W, MA X , et al. Capacitive performance of electrodeposited PEDOS and a comparative study with PEDOT. Electrochim. Acta, 2016,220:340-346. |
[7] | ZHOU H, ZHI X, ZHAI H . High performance flexible supercapacitor based on electropolymerized poly(3,4-ethylenedioxythiophene) grown on superficial expansion-treated graphite. Org. Electron., 2018,63:149-158. |
[8] | HUANG Y, ZHU M, HUANG Y , et al. Multifunctional energy storage and conversion devices. Adv. Mater., 2016,28(38):8344-8364. |
[9] | KLANKOWSKI S A, PANDEY G P, MALEK G T , et al. Higher-power supercapacitor electrodes based on mesoporous manganese oxide coating on vertically aligned carbon nanofibers. Nanoscale, 2015,7(18):8485-8494. |
[10] | YUKSEL R, CEVHER S C, CIRPAN A , et al. All-organic electrochromic supercapacitor electrodes. J. Electrochem. Soc., 2015,162(14):A2805-A2810. |
[11] | SNOOK G A, KAO P, BEST A S . Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources, 2011,196(1):1-12. |
[12] | CHEN Y, ZHU X, YANG D , et al. A novel design of poly (3,4-ethylenedioxythiophene):poly (styrenesulfonate)/molybdenum disulfide/poly (3,4-ethylenedioxythiophene) nanocomposites for fabric microsupercapacitors with favourable performances. Electrochim. Acta, 2019,298:297-304. |
[13] | MA L, NIU H, CAI J , et al. Optical, electrochemical, photoelectrochemical and electrochromic properties of polyamide/graphene oxide with various feed ratios of polyamide to graphite oxide. J. Mater. Chem. C, 2014,2(12):2272-2282. |
[14] | YANG H, YU J, SEO H J , et al. Improved electrochromic properties of nanoporous NiO film by NiO flake with thickness controlled by aluminum. Appl. Surf. Sci., 2018,461:88-92. |
[15] | YUKSEL R, COSKUN S, GUNBAS G , et al. Nanocomposite electrochromic supercapacitor electrodes. J. Electrochem. Soc., 2017,164(4):A721-A727. |
[16] | LÜ P, WANG Y, JI C , et al. Superelastic graphene aerogel/poly (3,4-ethylenedioxythiophene)/MnO2 composite as compression- tolerant electrode for electrochemical capacitors. Materials, 2017,10(12):1353-1366. |
[17] | HOU Y, CHENG Y, HOBSON T , et al. Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett., 2010,10(7):2727-2733. |
[18] | HERNANDEZ L A, RIVEROS G, MARTIN F , et al. Enhanced morphology, crystallinity and conductivity of poly(3,4-ethyldioxythiophene)/ ErGO composite films by in situ reduction of TrGO partially reduced on PEDOT modified electrode. Electrochim. Acta, 2017,240:155-162. |
[19] | HAN Y, DING B, TONG H , et al. Capacitance properties of graphite oxide/poly(3,4-ethylene dioxythiophene) composites. Appl. Polym. Sci., 2011,121(2):892-898. |
[20] | ABDAH M A A M, RAHMAN N A, SULAIMA Y . Enhancement of electrochemical performance based on symmetrical poly (3,4-ethylenedioxythiophene) coated polyvinyl alcohol/graphene oxide/manganese oxide microfiber for supercapacitor. Electrochim. Acta, 2018,259:466-473. |
[21] | WU X, WANG Q, ZHANG W , et al. Preparation of all-solid-state supercapacitor integrated with energy level indicating functionality. Synthetic Met., 2016,220:494-501. |
[22] | CHEN Y, WANG Y, SUN P , et al. Nickel oxide nanoflake-based bifunctional glass electrodes with superior cyclic stability for energy storage and electrochromic applications. J. Mater. Chem. A, 2015,3:20614-20618. |
[23] | CHAVAN H S, HOU BO, AHMED A T A , et al. Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring. Energ. Mat. Sol. C, 2018,185:166-173. |
[24] | CARBAS B B, TEKIN B . Poly(3,4-ethylenedioxythiophene) electrode grown in the presence of ionic liquid and its symmetrical electrochemical supercapacitor application. Polym. Bull., 2018,75:1547-1652. |
[25] | LE T, BIDAN G, GENTILE P , et al. Understanding the energy storage mechanisms of poly(3,4-ethylenedioxythiophene)-coated silicon nanowires by electrochemical quartz crystal microbalance. Materials Letter, 2019,240:59-61. |
[26] | NARESH V, ELIAS L, MARTHA S K . Poly (3,4-ethylenedioxythiophene) coated lead negative plates for hybrid energy storage systems. Electrochim. Acta, 2019,301:183-191. |
[27] | HARRIS A, MINETT A, AITCHISON P , et al. Compositional effects of PEDOT-PSS/single walled carbon nanotube films on supercapacitor device performance. J. Mater. Chem., 2011,21(40):15987-15994. |
[28] | LIU H, LIU X, MU S , et al. A novel fabrication approach for three-dimensional hierarchical porous metal oxide/carbon nanocomposites for enhanced solar photocatalytic performance. Catal. Sci. Technol., 2017,7:1965-1970. |
[29] | KIM H, KIM K, CHOI D , et al. Evaluation of a reliable electrochromic device based on PEDOT:PSS-TiO2 heterostructure fabricated at low temperature. Ionics, 2017,23:2465-2474. |
[30] | MOLINA P, KOZMA K, SANTALA M , et al. Aqueous bismuth titanium-oxo sulfate cluster speciation and crystallization. Angew. Chem. Int. Ed., 2017,56:16277-16281. |
[31] | LÜ Y, DU W, REN Y , et al. An integrated electrochromic supercapacitor based on nanostructured Er-containing titania using an Er(III)-doped polyoxotitanate cage. Inorg. Chem. Front., 2016,3:1119-1123. |
[32] | LÜ Y, YAO M, HOLGADO J P , et al. A low-temperature single- source route to an efficient broad-band cerium (III) photocatalyst using a bimetallic polyoxotitanium cage. RSC Adv., 2013,3(33):13659-13662. |
[33] | ZHOU H, YAO W, LI G , et al. Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity. Carbon, 2013,59:495-502. |
[34] | LIU G, YANG X, BONNEFONT A , et al. Conjugated hybrid films based on a new polyoxotitanate monomer. Chem. Commun., 2018,54:14132-14135. |
[35] | DU W, LÜ Y, CAI Z , et al. Flexible all-solid-state supercapacitor based on three-dimensional porous graphene/titanium-containing copolymer composite film. Acta Phys. -Chim. Sin., 2017,33(9):1828-1837. |
[36] | DU W, LÜ Y, LU H , et al. Surface modification by graphene oxide: an efficient strategy to improve the performance of activated carbon based supercapacitors. Chinese Chem. Lett., 2017,28(12):2285-2289. |
[37] | SONG Z, DUAN H, LI L . High-energy flexible solid-state supercapacitors based on O, N, S-tridoped carbon electrodes and a 3.5 V gel-type electrolyte. Chem. Eng. J., 2019,372:1216-1225. |
[38] | YAN J, ZHU D, LÜ Y, WEI X , et al. Water-in-salt electrolyte ion-matched N/O codoped porous carbons for high-performance supercapacitors. Chinese Chem. Lett., 2019, DOI: 10.1016/j.cclet.2019.05.035. |
[39] | SONG Z, DUAN H, ZHU D , et al. Ternary-doped carbon electrodes for advanced aqueous solid-state supercapacitors based on a “water-in-salt” gel electrolyte. J. Mater. Chem. A, 2019, DOI: 10.1039/C9TA02690H. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 孙鹏, 张绍宁, 毕辉, 董武杰, 黄富强. 基于结构调节碳材料的掺氮种类和含量及其超级电容器储能应用[J]. 无机材料学报, 2021, 36(7): 766-772. |
[3] | 刘芳芳, 传秀云, 杨扬, 李爱军. 氮/硫共掺杂对纤水镁石模板碳纳米管电化学性能的影响[J]. 无机材料学报, 2021, 36(7): 711-717. |
[4] | 赵起, 乔科, 姚勇吉, 陈长, 陈东初, 高彦峰. 基于高电导率的疏水气相SiO2复合凝胶电解质的高性能电致变色器件[J]. 无机材料学报, 2021, 36(2): 161-167. |
[5] | 李泽晖,谭美娟,郑元昊,骆雨阳,经求是,蒋靖坤,李明杰. 导电金属有机骨架材料在超级电容器中的应用[J]. 无机材料学报, 2020, 35(7): 769-780. |
[6] | 费明婕, 张任平, 朱归胜, 俞兆喆, 颜东亮. 磷酸根掺杂MnFe2O4及其赝电容特性[J]. 无机材料学报, 2020, 35(10): 1137-1141. |
[7] | 丁卓峰, 杨永强, 李在均. 组氨酸功能化碳点/石墨烯气凝胶的制备及超级电容器性能[J]. 无机材料学报, 2020, 35(10): 1130-1136. |
[8] | 李腾飞, 黄璐君, 闫旭东, 刘庆雷, 顾佳俊. 碳化钛/椴木多孔碳复合材料用于超级电容器性能的研究[J]. 无机材料学报, 2020, 35(1): 126-130. |
[9] | 张天宇, 崔聪, 程仁飞, 胡敏敏, 王晓辉. 同步氨化/碳化法制备MXene/C平面多孔复合电极[J]. 无机材料学报, 2020, 35(1): 112-118. |
[10] | 马亚楠, 刘宇飞, 余晨旭, 张传坤, 罗时军, 高义华. 不同横向尺寸单层Ti3C2Tx纳米片的制备及其电化学性能研究[J]. 无机材料学报, 2020, 35(1): 93-98. |
[11] | 许伟佳, 邱大平, 刘诗强, 李敏, 杨儒. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632. |
[12] | 刘伟, 郑凯, 王东红, 雷忆三, 范怀林. Co3O4纳米线阵列@活性炭纤维复合材料的水热合成及电化学应用[J]. 无机材料学报, 2019, 34(5): 487-492. |
[13] | 王远, 林杰, 常郑, 林天全, 钱猛, 黄富强. 基于三维石墨烯衬底的纳米片状水合氧化钌:电化学沉积制备以及柔性超级电容器储能应用[J]. 无机材料学报, 2019, 34(4): 455-460. |
[14] | 赵世怀,杨紫博,赵晓明,徐文文,温昕,张庆印. NiCo2S4@ACF异质电极材料的绿色制备及其超级电容性能研究[J]. 无机材料学报, 2019, 34(2): 130-136. |
[15] | 刘甜甜, 王庆华, 刘希莉, 高凤, 汪庆祥. 近球状钼酸镍/多壁碳纳米管复合材料的制备及其赝电容性能[J]. 无机材料学报, 2018, 33(7): 735-740. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||