无机材料学报 ›› 2020, Vol. 35 ›› Issue (5): 581-588.DOI: 10.15541/jim20190234
所属专题: 2020年环境材料论文精选(三)有机小分子去除
季邦1,2,赵文锋3,段洁利4,马立哲3,付兰慧1,杨洲1()
收稿日期:
2019-05-20
修回日期:
2019-07-01
出版日期:
2020-05-20
网络出版日期:
2019-07-23
作者简介:
季 邦(1990-), 男, 博士研究生. E-mail: 369370030@qq.com<br/>JI Bang(1990-), male, PhD candidate. E-mail: 369370030@qq.com
基金资助:
JI Bang1,2,ZHAO Wenfeng3,DUAN Jieli4,MA Lizhe3,FU Lanhui1,YANG Zhou1()
Received:
2019-05-20
Revised:
2019-07-01
Published:
2020-05-20
Online:
2019-07-23
Supported by:
摘要:
乙烯是果蔬采摘后腐烂变质的主要因素, 如何减少或去除果蔬贮藏过程中释放的乙烯, 是果蔬保鲜领域亟待解决的问题。本工作采用溶胶-凝胶法制备了一系列金属泡沫镍网负载TiO2/WO3薄膜催化剂, 采用不同手段对样品进行表征分析, 并以此薄膜为催化剂, 考察紫外光下乙烯催化降解性能。结果表明: TiO2/WO3成功负载在泡沫镍网表面。TiO2与WO3复合后形成了异质结, 抑制了电子-空穴对的复合, 样品的禁带宽度减小, 吸光度增强, 光催化性能提升。TiO2/WO3在紫外光下展现出良好的光催化活性和光催化稳定性, 当WO3占TiO2质量百分数为6%时, 光催化活性最高, 光催化乙烯速率常数为0.0332 min -1, 是TiO2的9.48倍, 但是过量的WO3会成为电子-空穴的复合中心, 降低光催化活性。研究还对紫外光下泡沫镍网负载TiO2/WO3薄膜的光催化降解乙烯机理进行了探讨。
中图分类号:
季邦, 赵文锋, 段洁利, 马立哲, 付兰慧, 杨洲. 泡沫镍网负载TiO2/WO3薄膜对乙烯的光催化降解[J]. 无机材料学报, 2020, 35(5): 581-588.
JI Bang, ZHAO Wenfeng, DUAN Jieli, MA Lizhe, FU Lanhui, YANG Zhou. Synthesis of TiO2/WO3 on Nickel Foam for the Photocatalytic Degradation of Ethylene[J]. Journal of Inorganic Materials, 2020, 35(5): 581-588.
图3 泡沫镍网不同倍率的SEM照片(a~c), 样品TW-6的SEM(d)和HRTEM(e)照片及其元素面扫描分布(f~h)
Fig. 3 Different magnification SEM images of nickel foam(a-c), SEM (d) and HRTEM (e) images and EDS mapping (f-h) of sample TW-6 (a, b) Nickel foam before corrosion oxidation; (c) Nickel foam after corrosion oxidation
Photocatalytic film | Regression equation | R2 | Rate constant, K°/min-1 |
---|---|---|---|
Nickel foam | ln(C0/C) = 0.0002t | 0.9832 | 0.0002 |
TiO2 | ln(C0/C) = 0.0035t | 0.9785 | 0.0035 |
TW-2 | ln(C0/C) = 0.0055t | 0.9942 | 0.0055 |
TW-4 | ln(C0/C) = 0.0069t | 0.9905 | 0.0069 |
TW-6 | ln(C0/C) = 0.0332t | 0.9803 | 0.0332 |
TW-8 | ln(C0/C) = 0.0075t | 0.9744 | 0.0075 |
表1 光催化降解乙烯一级动力学参数
Table 1 First-order kinetic parameters of photocatalytic degradation of ethylene
Photocatalytic film | Regression equation | R2 | Rate constant, K°/min-1 |
---|---|---|---|
Nickel foam | ln(C0/C) = 0.0002t | 0.9832 | 0.0002 |
TiO2 | ln(C0/C) = 0.0035t | 0.9785 | 0.0035 |
TW-2 | ln(C0/C) = 0.0055t | 0.9942 | 0.0055 |
TW-4 | ln(C0/C) = 0.0069t | 0.9905 | 0.0069 |
TW-6 | ln(C0/C) = 0.0332t | 0.9803 | 0.0332 |
TW-8 | ln(C0/C) = 0.0075t | 0.9744 | 0.0075 |
[1] |
DAN M, HUANG M, LIAO F , et al. Identification of ethylene responsive mirnas and their targets from newly harvested banana fruits using high-throughput sequencing. Journal of Agricultural and Food Chemistry, 2018,66(40):10628-10639.
DOI URL PMID |
[2] | 励建荣, 朱丹实 . 果蔬保鲜新技术研究进展. 食品与生物技术学报, 2012,31(4):337-347. |
[3] | TAS C E, HENDESSI S, BAYSAL M , et al. Halloysite nanotubes/ polyethylene nanocomposites for active food packaging materials with ethylene scavenging and gas barrier properties. Food and Bioprocess Technology, 2017,10(4):789-798. |
[4] | PIRSA S, CHAVOSHIZADEH S . Design of an optical sensor for ethylene based on nanofiber bacterial cellulose film and its application for determination of banana storage time. Polymers for Advanced Technologies, 2018,29(5):1385-1393. |
[5] | SANWAL G G, PAYASI A . Garlic extract plus sodium metabisulphite enhances shelf life of ripe banana fruit. International Journal of Food Science & Technology, 2007,42(3):303-311. |
[6] | ZHU X L, LIANG X Z, WANG P , et al. Porous Ag-ZnO microspheres as efficient photocatalyst for methane and ethylene oxidation: Insight into the role of Ag particles.Applied Surface Science, 2018,456:493-500. |
[7] | CHA B J, SAQLAIN S, SEO H O , et al. Hydrophilic surface modification of TiO2 to produce a highly sustainable photocatalyst for outdoor air purification. Applied Surface Science, 2019,479:31-38. |
[8] | ZHANG Y J, HE P Y, YANG Y M , et al. Renewable conversion of slag to graphene geopolymer for H2 production and wastewater treatment.Catalysis Today, 2019, doi: 10.1016/j.cattod.2019.02.003. |
[9] | HE P Y, ZHANG Y J, CHEN H , et al. Development of an eco-eff1cient CaMoO4/electroconductive geopolymer composite for recycling silicomanganese slag and degradation of dye wastewater. Journal of Cleaner Production, 2019,208:1476-1487. |
[10] | MAKROPOULOU T, PANAGIOTOPOULOU P, VENIERI D . N-doped TiO2 photocatalysts for bacterial inactivation in water. Journal of Chemical Technology & Biotechnology, 2018,93(9):2518-2526. |
[11] | ZHANG H, LIN J, LI Z , et al. Organic dye doped graphitic carbon nitride with a tailored electronic structure for enhanced photocatalytic hydrogen production. Catalysis Science & Technology, 2019,9(2):502-508. |
[12] | YANG Y, CUI Y, MIAO L , et al. Effects of treatment process and nano-additive on the microstructure and properties of Al2O3-TiO2 nanocomposite powders used for plasma spraying. Powder Technology, 2018,338:304-312. |
[13] | YAN Y, ZHOU X, LAN J , et al. Efficient photocatalytic disinfection of Escherichia coli by N-doped TiO2 coated on coal fly ash cenospheres. Journal of Photochemistry and Photobiology A: Chemistry, 2018,367:355-364. |
[14] |
WANG X, XIANG Y, ZHOU B , et al. Enhanced photocatalytic performance of Ag/TiO2 nanohybrid sensitized by black phosphorus nanosheets in visible and near-infrared light. Journal of Colloid and Interface Science, 2019,534:1-11.
DOI URL PMID |
[15] | DEB P, DHAR J C . Fast response UV photodetection using TiO2 nanowire/graphene oxide thin-film heterostructure. IEEE Photonics Technology Letters, 2019,31(8):571-574. |
[16] | PARK H, YOO S, KIM K . Synthesis of carbon-coated TiO2 by underwater discharge with capillary carbon electrode. IEEE Transactions on Plasma Science, 2019,47(2):1482-1486. |
[17] |
MANIBALAN G, MURUGADOSS G, THANGAMUTHU R , et al. Facile synthesis of heterostructure CeO2-TiO2 nanocomposites for enhanced electrochemical sensor and solar cell applications.Journal of Alloys and Compounds, 2019, 773:449-461.
DOI URL |
[18] | SABZI M, MOUSAVI ANIJDAN S H . Microstructural analysis and optical properties evaluation of Sol-Gel heterostructured NiO-TiO2 film used for solar panels. Ceramics International, 2019,45(3):3250-3255. |
[19] | LI S, LIU Z, XIANG G , et al. Influence of calcination temperature on the photocatalytic performance of the hierarchical TiO2 pinecone- like structure decorated with CdS nanoparticles. Ceramics International, 2019,45(1):767-776. |
[20] | ZHANG Q, WU Y, LI L , et al. Sustainable approach for spent V2O5-WO3/TiO2 catalysts management: selective recovery of heavy metal vanadium and production of value-added WO3-TiO2 photocatalysts. ACS Sustainable Chemistry & Engineering, 2018,6(9):12502-12510. |
[21] | YU YANG, TONG MING-XING, HE YU-LAN , et al. Preparation and visible-light photocatalytic performance of mesoporous hollow TiO2/WO3 spheres. Journal of Inorganic Materials, 2017,32(4):365-371. |
[22] |
ZHANG Y, WAN J, KE Y . A novel approach of preparing TiO2 films at low temperature and its application in photocatalytic degradation of methyl orange. Journal of Hazardous Materials, 2010, 177(1/3):750-754.
DOI URL PMID |
[23] | JIA J, LI D, CHENG X , et al. Construction of graphite/TiO2/ nickel foam photoelectrode and its enhanced photocatalytic activity. Applied Catalysis A: General, 2016,525:128-136. |
[24] | HU H, XIAO W, YUAN J , et al. High photocatalytic activity and stability for decomposition of gaseous acetaldehyde on TiO2/Al2O3 composite films coated on foam nickel substrates by Sol-Gel processes. Journal of Sol-Gel Science and Technology, 2008,45(1):1-8. |
[25] | LI S, ZHANG G, ZHENG H , et al. Application of BiFeO3-based on nickel foam composites with a highly efficient catalytic activity and easily recyclable in Fenton-like process under microwave irradiation. Journal of Power Sources, 2018,386:21-27. |
[26] | PAL B, VIJAYAN B L, KRISHNAN S G , et al. Hydrothermal syntheses of tungsten doped TiO2 and TiO2/WO3 composite using metal oxide precursors for charge storage applications. Journal of Alloys and Compounds, 2018,740:703-710. |
[27] |
DOHĿEVIĿ-MITROVIĿ Z, STOJADINOVIĿ S, LOZZI L , et al. WO3/TiO2 composite coatings: structural, optical and photocatalytic properties. Materials Research Bulletin, 2016,83:217-224.
DOI URL |
[28] |
MENDOZA J A, LEE D H, KANG J . Photocatalytic removal of gaseous nitrogen oxides using WO3/TiO2 particles under visible light irradiation: effect of surface modification. Chemosphere, 2017,182:539-546.
DOI URL PMID |
[29] | KHAN H, RIGAMONTI M G, PATIENCE G S , et al. Spray dried TiO2/WO3 heterostructure for photocatalytic applications with residual activity in the dark. Applied Catalysis B: Environmental, 2018, 226:311-323. |
[30] | WANG C, FU J, LONG M , et al. Facilitated photoinduced electron storage and two-electron reduction of oxygen by reduced graphene oxide in rGO/TiO2/WO3 composites. Electrochimica Acta, 2017,250:108-116. |
[31] | ZHANG L, LI Y, WANG H , et al. Hierarchical nanostructure of WO3 nanorods on TiO2 nanofibers and the enhanced visible light photocatalytic activity for degradation of organic pollutants. CrystEngComm, 2013,15(31):5986-5993. |
[32] | HUNGE Y M . Sunlight assisted photoelectrocatalytic degradation of benzoic acid using stratified WO3/TiO2 thin film. Ceramics International, 2017,43(13):10089-10096. |
[33] | XIAO P Y, LOU J F, ZHANG H X , et al. Enhanced visible- light-driven photocatalysis from WS2 quantum dots coupled to BiOCl nanosheets: synergistic effect and mechanism insight. Catalysis Science & Technology, 2018,8(1):201-209. |
[34] | ZENG X, WANG Z, WANG G , et al. Highly dispersed TiO2 nanocrystals and WO3 nanorods on reduced graphene oxide: Z-scheme photocatalysis system for accelerated photocatalytic water disinfection. Applied Catalysis B: Environmental, 2017,218:163-173. |
[35] |
SONG X L, LI Y, WEI Z , et al. Synthesis of BiVO4/P25 composites for the photocatalytic degradation of ethylene under visible light. Chemical Engineering Journal, 2017,314:443-452.
DOI URL |
[36] |
LEE J Y, JO W . Heterojunction-based two-dimensional N-doped TiO2/WO3 composite architectures for photocatalytic treatment of hazardous organic vapor. Journal of Hazardous Materials, 2016,314:22-31.
DOI URL PMID |
[1] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[2] | 安琳, 吴淏, 韩鑫, 李耀刚, 王宏志, 张青红. 非贵金属Co5.47N/N-rGO助催化剂增强TiO2光催化制氢性能[J]. 无机材料学报, 2022, 37(5): 534-540. |
[3] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[4] | 吕庆洋, 张玉亭, 顾学红. 超声辅助溶胶-凝胶法制备中空纤维TiO2超滤膜[J]. 无机材料学报, 2022, 37(10): 1051-1057. |
[5] | 蔡苗, 陈子航, 曾实, 杜江慧, 熊娟. CuS纳米片修饰Bi5O7I复合材料用于光催化还原Cr(VI)水溶液[J]. 无机材料学报, 2021, 36(6): 665-672. |
[6] | 肖翔, 郭少柯, 丁成, 张志洁, 黄海瑞, 徐家跃. CsPbBr3@TiO2核壳结构纳米复合材料用作水稳高效可见光催化剂[J]. 无机材料学报, 2021, 36(5): 507-512. |
[7] | 席文, 李海波. TiO2/Ti3C2Tx复合材料的制备及其杂化电容脱盐特性的研究[J]. 无机材料学报, 2021, 36(3): 283-291. |
[8] | 梁凤青, 温兆银. 固态锂电池用MOF/聚氧化乙烯复合聚合物电解质[J]. 无机材料学报, 2021, 36(3): 332-336. |
[9] | 熊金艳, 罗强, 赵凯, 张梦梦, 韩朝, 程刚. 界面电荷快速转移提升铜修饰氧化钨光催化性能[J]. 无机材料学报, 2021, 36(3): 325-331. |
[10] | 周开岭, 汪浩, 张倩倩, 刘晶冰, 严辉. WO3电致变色薄膜离子传输动力过程及其循环稳定性[J]. 无机材料学报, 2021, 36(2): 152-160. |
[11] | 刘彩, 刘芳, 黄方, 王晓娟. 海藻基CDs-Cu-TiO2复合材料的制备及其光催化性能[J]. 无机材料学报, 2021, 36(11): 1154-1162. |
[12] | 李翠霞, 孙会珍, 金海泽, 史晓, 李文生, 孔文慧. 3D多级孔rGO/TiO2复合材料的构筑及其光催化性能研究[J]. 无机材料学报, 2021, 36(10): 1039-1046. |
[13] | 徐晶威,李政,王泽普,于涵,何祺,付念,丁帮福,郑树凯,闫小兵. 交错能带结构钕掺杂钒酸铋形貌与光催化性能调控[J]. 无机材料学报, 2020, 35(7): 789-795. |
[14] | 王苹,李心宇,时占领,李海涛. Ag与Ag2O协同增强TiO2光催化制氢性能的研究[J]. 无机材料学报, 2020, 35(7): 781-788. |
[15] | 方美蓉,秦利梅,贾晓博,李永生,牛德超,胡泽岚. 聚乙烯亚胺改性的双介孔氧化硅基因载体构建[J]. 无机材料学报, 2020, 35(2): 187-192. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||