[1] |
WU N M, WONG H L, YAM V W . Photochromic benzo phosphole oxide with excellent thermal irreversibility and fatigue resistance in the thin film solid state via direct attachment of dithienyl units to the weakly aromatic heterocycle. Chemical Science, 2017,8:1309-1315.
|
[2] |
WANG R G, LU X L, HAO L F , et al. Enhanced and tunable photochromism of MoO3-butylamine organic-inorganic hybrid composites. Journal of Materials Chemistry C, 2017,5:427-433.
|
[3] |
HADJOUDIS E, MAVRIDIS I M . Photochromism and thermochromism of schiff bases in the solid state: structural aspects. Chemical Society Reviews, 2004,33:579-588.
|
[4] |
PANG S C, HYUN H, LEE S , et al. Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chemical Communications, 2012,48:3745-3747.
|
[5] |
ZHANG Y Y, LUO L H, LI K X , et al. Reversible up-conversion luminescence modulation based on UV-Vis light-controlled photochromism in Er3+ doped Sr2SnO4. Journal of Materials Chemistry C, 2018,6:13148-13156.
|
[6] |
RUSSO M, RIGBY S E J, CASERI W , et al. Pronounced photochromism of titanium oxide hydrates (hydrous TiO2). Journal of Materials Chemistry, 2010,20:1348-1356.
|
[7] |
NISHIO S, KAKIHANA M . Evidence for visible light photochromism of V2O5. Chemistry Materials, 2002,14:3730-3733.
|
[8] |
BLACKMAN C S, PARKINARKIN I P . Atmospheric pressure chemical vapor deposition of crystalline monoclinic WO3 and WO3-x thin films from reaction of WCl6 with O-containing solvents and their photochromic and electrochromic properties. Chemistry Materials, 2005,17:1583-1590.
|
[9] |
HOSONO E, FUJIHARA S, KAKIUCH K , et al. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. Journal of the American Chemical Society, 2004,126:7790-7791.
|
[10] |
ZHANG Q W, YUE S S, SUN H Q , et al. Nondestructive up-conversionreadout in Er/Yb co-doped Na0.5Bi2.5Nb2O9-based optical storage materials for optical data storage device applications. Journal of Materials Chemistry C, 2017,5:3838-3847.
|
[11] |
ZHANG Q W, ZHANG Y Y, SUN H Q , et al. Tunable luminescence contrast of Na0.5Bi4.5Ti4O15:Re (Re=Sm, Pr, Er) photochromics by controlling the excitation energy of luminescent centers. ACS Applied Matericals & Interfaces, 2016,8:34581-34589.
|
[12] |
LI K X, LUO L H, ZHANG Y Y , et al. Tunable luminescence contrast in photochromic ceramics (1-x)Na0.5Bi0.5TiO3-xNa0.5K0.5NbO3: 0.002Er by an electric field poling. ACS Applied Matericals & Interfaces, 2018,48:41525-41534.
|
[13] |
ZHEN Y, LI J F . Normal sintering of (K, Na)NbO3-based ceramics: influence of sintering temperature on densification, microstructure, and electrical properties. Journal of the American Chemical Society, 2006,89:3669-3675.
|
[14] |
SU L K, ZHU K J, BAI L, QIU J H , et al. Effects of Sb-doping on the formation of (K, Na)(Nb, Sb)O3 solid solution under hydrothermal conditions. Journal of Alloys and Compounds, 2010,493:186-191.
|
[15] |
ZHANG Y Y, LUO L H, LI K X , et al. Up-conversion luminescence switching of (K0.5Na0.5)0.995Er0.005NbO3 ferroelectric ceramic based on photochromic reaction. Ceramics International, 2018,44:1086-1090.
|
[16] |
LIU J, ZHANG Y, SUN H Q , et al. Reversible up-conversion emission and photo-switching properties in Er doped (K,Na)NbO3 ferroelectrics. Journal of Luminescence, 2019,207:85-92.
|
[17] |
ZHANG Y Y, LUO L H, LI K X , et al. Large and reversible in-situ up-conversion photoluminescence modulation based on photochromism via electric-field and thermal stimulus in ferroelectrics. Journal of European Ceramic Society, 2018,38:3154-3161.
|
[18] |
SUN H Q, LIU J, WANG X H , et al. (K, Na)NbO3 ferroelectrics: a new class of solid-state photochromic materials with reversible luminescence switching behavior. Journal of Materials Chemistry C, 2017,5:9080-9087.
|
[19] |
WANG C L, JIN Y H, LV Y , et al. Reversible luminescence switching and non-destructive optical readout behaviors of Sr3SnMO7:Eu3+(M = , Si, Ge, Ti, Zr, and Hf) driven by photochromism and tuned by partial cation substitution. Sensors and Actuators B: Chemical, 2018,262:289-297.
|
[20] |
KAMIMURA S, YAMADA H, XU C N . Purple photochromism in Sr2SnO4:Eu 3+ with layered perovskite-related structure . Applied Physics Letters, 2013,102:031110.
|
[21] |
AKIYAMA M . Blue-green light photochromism in europium doped BaMgSiO4. Applied Physics Letters, 2010,97:181905.
|
[22] |
WANG J, LUO L H . Probing the diffusion behavior of polymorphic phase transition in K0.5Na0.5NbO3 ferroelectric ceramics by Eu3+ photoluminescence. Journal of Applied Physics, 2018,123:144102.
|
[23] |
SUN H Q, ZHANG Q W, WANG X S , et al. New red-emitting material K0.5Na0.5NbO3: Eu3+ for white LEDs. Materials Research Bulletin, 2015,64:134-138.
|
[24] |
GENG Z M, LI K, LI X , et al. Fabrication and photoluminescence of Eu-doped KNN based transparent ceramics. Journal of Materials Science, 2017,52:2285-2295.
|
[25] |
ZHOU Y, GUO M, ZHANG C , et al. Hydrothermal synthesis and piezoelectric property of Ta-doping K0.5Na0.5NbO3 lead-free piezoelectric ceramic. Ceramics International, 2009,35:3253-3258.
|
[26] |
ZHANG Y, XU J Y, YANG B B , et al. Luminescence properties and energy migration mechanism of Eu3+ activated Bi4Si3O12 as a potential phosphor for white LEDs. Materials Research Express, 2018,5:026202.
|
[27] |
WU X, CHUNG T H, KWOK K W . Enhanced visible and mid-IR emissions in Er/Yb-cooped K0.5Na0.5NbO3 ferroelectric ceramics. Ceramics International, 2015,41:14041-14048.
|
[28] |
SUN H Q, ZHANG Y, LIU JIAN , et al. Reversible upconversion switching for Ho/Yb codoped (K,Na)NbO3 ceramics with excellent luminescence readout capability. Journal of the American Chemical Society, 2018,101:5659-5674.
|
[29] |
NIKL M . Wide band gap scintillation materials: progress in the technology and material understanding. Physica Status Solidi, 2000,178:595-620.
|
[30] |
ZHANG Q W, ZHANG Y, SUN H Q , et al. Photoluminescence, photochromism, and reversible luminescence modulation behavior of Sm-doped Na0.5Bi2.5Nb2O9 ferroelectrics. Journal of European Ceramic Society, 2017,37:955-966.
|