无机材料学报 ›› 2019, Vol. 34 ›› Issue (7): 694-702.DOI: 10.15541/jim20180512

所属专题: 离子电池材料

• 综述 • 上一篇    下一篇

全固态锂离子电池正极与石榴石型固体电解质界面的研究进展

李栋1,2,雷超1,2,赖华3,刘小林1,2,姚文俐1,2,梁彤祥1,钟盛文1,2   

  1. 1. 材料科学与工程学院 江西理工大学
    2. 江西省动力电池及材料重点实验室
    3. 资源环境与工程学院, 赣州341000
  • 收稿日期:2018-10-31 修回日期:2019-01-15 出版日期:2019-07-20 网络出版日期:2019-06-26
  • 作者简介:李 栋(1982-), 男, 博士, 讲师. E-mail:libehave@jxust.edu.cn
  • 基金资助:
    国家自然科学基金(51874151);江西省教育厅一般项目(GJJ170510);江西省科技支撑计划项目(20151BBE50106)

Recent Advancements in Interface between Cathode and Garnet Solid Electrolyte for All Solid State Li-ion Batteries

LI Dong1,2,LEI Chao1,2,LAI Hua3,LIU Xiao-Lin1,2,YAO Wen-Li1,2,LIANG Tong-Xiang1,ZHONG Sheng-Wen1,2   

  1. 1. School of Materials Science and Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
    2. Jiangxi Key Laboratory of Power Battery and Materials, Jiangxi University of Science and Technology, Ganzhou 341000, China
    3. School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
  • Received:2018-10-31 Revised:2019-01-15 Published:2019-07-20 Online:2019-06-26
  • Supported by:
    National Natural Science Foundation of China(51874151);General Program by Jiangxi Provincial Department of Education(GJJ170510);Science and Technology Support Project of Jiangxi Province(20151BBE50106)

摘要:

全固态锂离子电池具有高安全性、高能量密度、宽使用温度范围以及长使用寿命等优势, 在动力电池汽车和大规模储能电网领域具有广阔的应用前景。作为全固态电池的重要组成部分, 无机固体电解质尤其是石榴石型固态电解质在室温下锂离子电导率可达10 -3 S·cm -1, 且对金属锂相对稳定, 在全固态电池的应用中具有明显的优势。然而正极与石榴石型固体电解质间接触性能以及界面的稳定性差, 使得电池表现出高的界面阻抗、低的库伦效率和差的循环性能。本文以全固态锂离子电池正极与石榴石型固体电解质界面为研究对象, 分析了正极/固体电解质的界面特性以及界面研究中存在的问题, 综述了正极复合、界面处理工艺、界面层引入等界面调控和改性的方法, 阐述了优化正极与石榴石型固体电解质界面结构, 改善界面润湿性的解决思路, 提出了未来全固态锂离子电池发展中有待进一步改进的关键问题, 为探索全固态锂离子电池的实际应用提供了借鉴。

关键词: 无机固体电解质, 复合电解质, 界面润湿性, 界面阻抗, 界面改性, 综述

Abstract:

All-solid-state lithium battery (ASSLB) with inorganic solid state electrolytes is one of promising candidates for electric vehicles and large-scale smart grids for storage of alternative energy resources due to their benefits in safety, energy density, operable temperature range, and longer cycle life. As the key component in ASSLB, inorganic lithium-ion-based solid-state electrolytes (SSEs), especially the garnet-type solid electrolytes that own ionic conductivities in the order of 10 -3 S·cm -1 at room temperature and are relative safe vs. Li metal, have obvious advantages in ASSLB. However, interfacial instability and their poor solid-solid contact between garnet and cathode result in high interfacial resistance, low efficiency, and poor cycle performance. Based on these understandings and analyses of interface characteristics and issues, this work presents a brief review on modification of interface, covering composite cathode, composite electrolyte, interface engineering, and interface layer.Some approaches of improving interface wettability and future research directions of ASSLB are given as well, which endeavor to realize the practical applications of ASSLB.

Key words: inorganic solid state electrolyte, composite electrolyte, interfacial wettability, interfacial impendence, interface modification, review

中图分类号: