[1] |
BERG E J, VILLEVIEILLE C, STREICH D , et al. Rechargeable batteries: grasping for the limits of chemistry. J. Electrochem. Soc., 2015,162(14):A2468-A2475.
|
[2] |
MANTHIRAM A, FU Y Z, CHUNG S H , et al. Rechargeable lithium- sulfur batteries. Chem. Rev., 2014,114(23):11751-11787.
DOI
URL
PMID
|
[3] |
AO X, WU W X, WU T , et al. Operating temperature on cathode material and electrochemical performance of Na-NiCl2 batteries. J. Inorg. Mater., 2017,32(12):1243-1249.
|
[4] |
YIN Y X, XIN S, GUO Y G , et al. Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed., 2013,52(50):13186-13200.
DOI
URL
PMID
|
[5] |
WANG Y H, JIN J, GUO Z S , et al. Direct view for the deformation evolution of sulfur electrode during Li-S battery cycling. J. Inorg. Mater., 2017,32(3):247-251.
|
[6] |
HASSOUN J, SCROSATI B . A high-performance polymer tin sulfur lithium ion battery. Angew. Chem. Int. Ed., 2010,49(13):2371-2374.
DOI
URL
PMID
|
[7] |
LIN Z, LIU Z C, DUDNEY N J , et al. Lithium superionic sulfide cathode for all-solid lithium-sulfur batteries. ACS Nano, 2013,7(3):2829-2833.
DOI
URL
PMID
|
[8] |
KIM J W, OCON J D, PARK D W , et al. Functionalized graphene- based cathode for highly reversible lithium-sulfur batteries. ChemSusChem, 2014,7(5):1265-1273.
DOI
URL
PMID
|
[9] |
DIAO Y, XIE K, HONG X B , et al. Analysis of the sulfur cathode capacity fading mechanism and review of the latest development for Li-S battery. Acta Chim. Sin., 2013,71(4):508-518.
|
[10] |
MIKHAYLIK Y V, AKRIDGE J R . Polysulfide shuttle study in the Li/S battery system. J. Electrochem. Soc., 2004,151(11):A1969-A1976.
DOI
URL
PMID
|
[11] |
JI X L, NAZAR L F . Advances in Li-S batteries. J. Mater. Chem., 2010,20(44):9821-9826.
|
[12] |
XU G Y, DING B, PAN J , et al. High performance lithium-sulfur batteries: advances and challenges. J. Mater. Chem. A, 2014,2(32):12662-12676.
|
[13] |
SU Y S, MANTHIRAM A . Lithium-sulphur batteries with a microporous carbon paper as a bifunctional interlayer. Nat. Commun., 2012,3:1166.
DOI
URL
PMID
|
[14] |
ZU C X, SU Y S, FU Y Z , et al. Improved lithium-sulfur cells with a treated carbon paper interlayer. Phys. Chem. Chem. Phys., 2013,15(7):2291-2297.
DOI
URL
PMID
|
[15] |
XIAO Z B, YANG Z, WANG L , et al. A lightweight TiO2/graphene interlayer, applied as a highly effective polysulfide absorbent for fast, long-life lithium-sulfur batteries. Adv. Mater., 2015,27(18):2891-2898.
DOI
URL
PMID
|
[16] |
ZHOU W D, XIAO X C, CAI M , et al. Polydopamine-coated, nitrogen- doped, hollow carbon sulfur double-layered core-shell structure for improving lithium sulfur batteries. Nano Lett., 2014,14(9):5250-5256.
DOI
URL
PMID
|
[17] |
FU Y Z, MANTHIRAM A . Orthorhombic bipyramidal sulfur coated with polypyrrole nanolayers as a cathode material for lithium- sulfur batteries. J. Phys. Chem. C, 2012,116(16):8910-8915.
|
[18] |
MA G Q, WEN Z Y, JIN J , et al. Enhanced cycle performance of Li-S battery with a polypyrrole functional interlayer. J. Power Sources, 2014,267:542-546.
|
[19] |
XING Y, YANG Y, CHEN R J , et al. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O2 battery. Small, 2018,14(19):1704366
DOI
URL
PMID
|
[20] |
WANG C L, SUN L S, ZHANG F F , et al. Formation of Mo-polydopamine hollow spheres and their conversions to MoO2/C and Mo2C/C for efficient electrochemical energy storage and catalyst. Small, 2017,13(32):1701246.
|
[21] |
ZHANG S P, WANG G, JIN J , et al. Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO3 nanosheets for low-overpotential Li-O2 batteries. Nano Energy, 2017,36:186-196.
|
[22] |
ZHOU F, LI Z, LUO X , et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries. Nano Lett., 2018,18(2):1035-1043.
DOI
URL
PMID
|
[23] |
NI L B, ZHAO G J, YANG G , et al. Dual core-shell-structured S@C@MnO2 nanocomposite for highly stable lithium-sulfur batteries. ACS Appl. Mater. Interfaces, 2017,9(40):34793-34803.
DOI
URL
PMID
|