[1] |
CASSIDY M, LINDSAY G, KENDALL K . The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes. Journal of Power Sources, 1996,61(1):189-192.
DOI
URL
|
[2] |
SLATER R P, FAGG D P, IRVINE J T S . Synthesis and electrical characterization of doped perovskite titanates as potential anode materials for solid oxide fuel cells. Journal of Materials Chemistry, 1997,7(12):2495-2498.
DOI
URL
|
[3] |
TAO S, IRVINE J T S . A redox-stable efficient anode for solid- oxide fuel cells. Nature Materials, 2003,2(5):320.
DOI
URL
PMID
|
[4] |
LIU Q, DONG X, XIAO G , et al. A novel electrode material for symmetrical SOFCs. Advanced Materials, 2010,22(48):5478-5482.
DOI
URL
PMID
|
[5] |
DU Z H, ZHAO H L, LI S M , et al. Exceptionally high performance anode material based on lattice structure decorated double perovskite Sr2FeMo2/3Mg1/3O6-δ for solid oxide fuel cells. Advanced Energy Materials, 2018,8(18):1800062.
DOI
URL
|
[6] |
YANG G, FENG J, SUN W , et al. The characteristic of strontium- site deficient perovskites SrxFe1.5Mo0.5O6-δ(x=1.9-2.0) as intermediate-temperature solid oxide fuel cell cathodes. Journal of Power Sources, 2014,268:771-777.
DOI
URL
|
[7] |
HE B, ZHAO L, SONG S , et al. Sr2Fe1.5Mo0.5O6-δ-Sm0.2Ce0.8O1.9 composite anodes for intermediate-temperature solid oxide fuel cells. Journal of The Electrochemical Society, 2012,159(5):B619-B626.
DOI
URL
|
[8] |
XIAO G L, CHEN F L . Ni modified ceramic anodes for direct- methane solid oxide fuel cells. Electrochemistry Communications, 2011,13(1):57-59.
DOI
URL
|
[9] |
XIAO G L, JIN C, LIU Q , et al. Ni modified ceramic anodes for solid oxide fuel cells. Journal of Power Sources, 2012,201:43-48.
DOI
URL
|
[10] |
LIU Z, LIU B, DING D , et al. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of Power Sources, 2013,237:243-259.
DOI
URL
|
[11] |
TSEKOURAS G, NEAGU D, IRVINE J T S . Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ. Sci., 2012,6(1):256-266.
|
[12] |
NEAGU D, TSEKOURAS G, MILLER D N , et al. In situ growth of nanoparticles through control of non-stoichiometry. Nature Chemistry, 2013,5(11):916-923.
DOI
URL
PMID
|
[13] |
DU Z, ZHAO H, YI S , et al. High-performance anode material Sr2FeMo0.65Ni0.35O6-δ with in situ exsolved nanoparticle catalyst. ACS Nano, 2016,10(9):8660-8669.
DOI
URL
PMID
|
[14] |
GAO Y, WANG J, LYU Y Q , et al. In situ growth of Pt3Ni nanoparticles on an A-site deficient perovskite with enhanced activity for the oxygen reduction reaction. J. Mater. Chem. A, 2017,5(14):6399-6404.
DOI
URL
|
[15] |
MAHATO N, BANERJEE A, GUPTA A , et al. Progress in material selection for solid oxide fuel cell technology: a review. Prog. Mater. Sci., 2015,72:141-337.
DOI
URL
|
[16] |
WANG Y, LIU T, LI M , et al. Exsolved Fe-Ni nano-particles from Sr2Fe1.3Ni0.2Mo0.5O6 perovskite oxide as a cathode for solid oxide steam electrolysis cells. Journal of Materials Chemistry A, 2016,4(37):14163-14169.
DOI
URL
|
[17] |
ZHU T, TROIANI H E, MOGNI L V , et al. Ni-substituted Sr(Ti,Fe)O3 SOFC anodes: achieving high performance via metal alloy nanoparticle exsolution. Joule, 2018,2(3):478-496.
DOI
URL
|
[18] |
MYUNG J, NEAGU D, MILLER D N , et al. Switching on electrocatalytic activity in solid oxide cells. Nature, 2016,537(7621):528-531.
DOI
URL
PMID
|
[19] |
LEE W, HAN J W, CHEN Y , et al. Cation size mismatch and charge interactions drive dopant segregation at the surfaces of manganite perovskites. J. Am. Chem. Soc., 2013,135(21):7909-7925.
DOI
URL
PMID
|
[20] |
GÁLVEZ M E, JACOT R, SCHEFFE J , et al. Physico-chemical changes in Ca, Sr and Al-doped La-Mn-O perovskites upon thermochemical splitting of CO2 via redox cycling. Physical Chemistry Chemical Physics, 2015,17(9):6629-6634.
DOI
URL
PMID
|
[21] |
MUÑOZ-GARCÍA A B, BUGARIS D E, PAVONE M , et al. Unveiling structure-property relationships in Sr2Fe1.5Mo0.5O6-δ, an electrode material for symmetric solid oxide fuel cells. Journal of the American Chemical Society, 2012,134(15):6826-6833.
DOI
URL
|
[22] |
MENG X, HAN D, WU H , et al. Characterization of SrFe0.75Mo0.25O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes prepared by infiltration. Journal of Power Sources, 2014,246:906-911.
DOI
URL
|
[23] |
XIAO G, LIU Q, ZHAO F , et al. Sr2Fe1.5Mo0.5O6 as cathodes for intermediate-temperature solid oxide fuel cells with La0.8Sr0.2Ga0.87Mg0.13O3 electrolyte. J. Electrochem. Soc., 2011,158(5):B455-B460.
DOI
URL
|
[24] |
SACCOCCIO M, WAN T H, CHEN C , et al. Optimal regularization in distribution of relaxation times applied to electrochemical impedance spectroscopy: ridge and Lasso regression methods - a theoretical and experimental study. Electrochimica Acta, 2014,147:470-482.
DOI
URL
|
[25] |
DU Z H, ZHAO H L, YANG C Y , et al. Optimization of strontium molybdate based composite anode for solid oxide fuel cells. J. Power Sources, 2015,274:568-574.
DOI
URL
|
[26] |
MENG X, LIU X J, HAN D , et al. Symmetrical solid oxide fuel cells with impregnated SrFe0.75Mo0.25O3-δ electrodes. J. Power Sources, 2014,252:58-63.
|