无机材料学报 ›› 2020, Vol. 35 ›› Issue (4): 482-490.DOI: 10.15541/jim20190154
所属专题: 2020年环境材料论文精选(三)有机小分子去除
黄谢意1,2,王鹏2,3,尹国恒1,张绍宁1,赵伟1,王东1,毕庆员1(),黄富强1,3,4()
收稿日期:
2019-04-12
修回日期:
2019-05-24
出版日期:
2020-04-20
网络出版日期:
2019-06-17
作者简介:
黄谢意(1994-), 男, 硕士研究生. E-mail: huangxieyi@student.sic.ac.cn
HUANG Xieyi1,2,WANG Peng2,3,YIN Guoheng1,ZHANG Shaoning1,ZHAO Wei1,WANG Dong1,BI Qingyuan1(),HUANG Fuqiang1,3,4()
Received:
2019-04-12
Revised:
2019-05-24
Published:
2020-04-20
Online:
2019-06-17
Supported by:
摘要:
高活性催化剂是挥发性有机化合物(VOCs)催化氧化消除的关键因素。本研究通过简单的共沉淀法成功制备了具有高比表面积的非晶介孔磷掺杂氧化钛负载铂催化剂(Pt/ATO-P)。通过P掺杂, 既可获得非晶介孔结构, 又可获得高ATO-P比表面积(可达278.9 m2·g-1)。非晶介孔Pt/ATO-P催化剂显示出优异的VOCs催化氧化性能和良好的热稳定性。Pt/ATO-P样品在空速为36000 mL·h-1·g-1、甲苯浓度为10000 mL·m-3的反应条件下, 对甲苯催化氧化的T50和T90(实现50%和90%转化率所需的温度)分别为130 ℃和140 ℃, 明显优于无磷催化剂Pt/TiO2。这些发现可以为拓展非晶介孔磷化材料在环境净化和能源转化等领域的应用提供重要参考。
中图分类号:
黄谢意,王鹏,尹国恒,张绍宁,赵伟,王东,毕庆员,黄富强. 掺磷非晶氧化钛负载铂用于高效催化氧化挥发性有机化合物[J]. 无机材料学报, 2020, 35(4): 482-490.
HUANG Xieyi,WANG Peng,YIN Guoheng,ZHANG Shaoning,ZHAO Wei,WANG Dong,BI Qingyuan,HUANG Fuqiang. Removal of Volatile Organic Compounds Driven by Platinum Supported on Amorphous Phosphated Titanium Oxide[J]. Journal of Inorganic Materials, 2020, 35(4): 482-490.
Catalyst | BET surface area /(m2?g-1) | Pore volume /(cm3?g-1) | Pore size /nm | Elemental composition /wt%[a] | ||
---|---|---|---|---|---|---|
P | Ti | O | ||||
TiO2 | 10.9 | 0.04 | 15.7 | - | 60.0 | 40.0 |
ATO-P | 278.9 | 0.80 | 11.4 | 19.2 | 32.1 | 48.7 |
Table 1 Textural properties and elemental compositions of TiO2 and ATO-P samples
Catalyst | BET surface area /(m2?g-1) | Pore volume /(cm3?g-1) | Pore size /nm | Elemental composition /wt%[a] | ||
---|---|---|---|---|---|---|
P | Ti | O | ||||
TiO2 | 10.9 | 0.04 | 15.7 | - | 60.0 | 40.0 |
ATO-P | 278.9 | 0.80 | 11.4 | 19.2 | 32.1 | 48.7 |
Fig. 8 TEM (a) and HRTEM (b) images of Pt/ATO-P with insert in (a) indicating the particle size distribution of Pt nanoparticles, XRD patterns (c) and XPS Pt4f (d) of Pt/ATO-P
Fig. 11 Catalytic activity of Pt/ATO-P for the conversion of benzene (a), ethyl acetate (b), n-hexane (c), and mesitylene (d) with respect to reaction temperature
Fig. S4 TEM images of 0.5wt% Pt/ATO-P (a) and 2wt% Pt/ATO-P (b) For the catalyst with low loading of 0.5wt%, there are few Pt nanoparticles in the ATO-P supports. By contract, the Pt particles are larger than that with loading of 1wt% when the loading up to 2wt%
[1] | XIE S H, LIU Y X, DENG J G , et al. Insights into the active sites of ordered mesoporous cobalt oxide catalysts for the total oxidation of o-xylene. Journal of Catalysis, 2017,352:282-292. |
[2] | GENUINO H C, DHARMARATHNA S, NJAGI E C , et al. Gas-phase total oxidation of benzene, toluene, ethylbenzene, and xylenes using shape-selective manganese oxide and copper manganese oxide catalysts. Journal of Physical Chemistry C, 2012,116(22):12066-12078. |
[3] | SIHAIB Z, PULEO F, GARCIA-VARGAS J M , et al. Manganese oxide-based catalysts for toluene oxidation. Applied Catalysis B: Environmental, 2017,209(15):689-700. |
[4] | ROKICIŃSKA A, DROZDEK M, DUDEK B , et al. Cobalt- containing BEA zeolite for catalytic combustion of toluene. Applied Catalysis B: Environmental, 2017,212:59-67. |
[5] | SANTOS V P PEREIRA M F R ÓRFÃO J J M , et al. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental, 2010,99(1/2):353-363. |
[6] | ŠULIGOJ A, ŠTANGAR U L, RISTIĆ A , et al. TiO2-SiO2 films from organic-free colloidal TiO2 anatase nanoparticles as photocatalyst for removal of volatile organic compounds from indoor air. Applied Catalysis B: Environmental, 2016,184:119-131. |
[7] | QIAN X F, YUE D T, TIAN Z Y , et al. Carbon quantum dots decorated Bi2WO6 nanocomposite with enhanced photocatalytic oxidation activity for VOCs. Applied Catalysis B: Environmental, 2016,193:16-21. |
[8] | CHEN J, CHEN X, XU W J , et al. Homogeneous introduction of CeOy into MnOx-based catalyst for oxidation of aromatic VOCs. Applied Catalysis B: Environmental, 2018,224:825-835. |
[9] | YANG H G, DENG J G, LIU Y X , et al. Preparation and catalytic performance of Ag, Au, Pd or Pt nanoparticles supported on 3DOM CeO2-Al2O3 for toluene oxidation. Journal of Molecular Catalysis A: Chemical, 2016,414:9-18. |
[10] | PENG R S, SUN X B, LI S J , et al. Shape effect of Pt/CeO2 catalysts on the catalytic oxidation of toluene. Chemical Engineering Journal, 2016,306:1234-1246. |
[11] | ALGHAMDI A O, JEDIDI A, AZIZ S G , et al. Theoretical insights into dehydrogenative chemisorption of alkylaromatics on Pt(100) and Ni(100). Journal of Catalysis, 2018,363:197-203. |
[12] | ZHANG Z X, JIANG Z, SHANGGUAN W F . Low-temperature catalysis for VOCs removal in technology and application: a state-of-the-art review. Catalysis Today, 2016,264:270-278. |
[13] | XIE S H, LIU Y X, DENG J G , et al. Effect of transition metal doping on the catalytic performance of Au-Pd/3DOM Mn2O3 for the oxidation of methane and o-xylene. Applied Catalysis B: Environmental, 2017,206:221-232. |
[14] | SANTOS V P CARABINEIRO S A C TAVARES P B , et al. Oxidation of CO, ethanol and toluene over TiO2 supported noble metal catalysts. Applied Catalysis B: Environmental, 2010,99(1/2):198-205. |
[15] | FU X R, LIU Y, YAO W Y , et al. One-step synthesis of bimetallic Pt-Pd/MCM-41 mesoporous materials with superior catalytic performance for toluene oxidation. Catalysis Communications, 2016,83:22-26. |
[16] | YIN G H, HUANG X Y, CHEN T Y , et al. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catalysis, 2018,8(2):1009-1017. |
[17] | WU D W, ZHANG Q L, LIN T , et al. Effect of Fe on the selective catalytic reduction of NO by NH3 at low temperature over Mn/CeO2-TiO2 catalyst. Journal of Inorganic Materials, 2012,27(5):495-500. |
[18] | YU W W, ZHANG Q H, SHI G Y , et al. Preparation of Pt-loaded TiO2 nanotubes/nanocrystals composite photocatalysts and their photocatalytic properties. Journal of Inorganic Materials, 2011,26(7):747-752. |
[19] | COMOTTI M, LI W C, SPLIETHOFF B , et al. Support effect in high activity gold catalysts for CO oxidation. Journal of the American Chemical Society, 2006,128(3):917-924. |
[20] | LEE J S, PARK G S, LEE H I , et al. Ketjenblack carbon supported amorphous manganese oxides nanowires as highly efficient electrocatalyst for oxygen reduction reaction in alkaline solutions. Nano Letters, 2011,11(12):5362-5366. |
[21] | ZHENG Y L, WANG W Z, JIANG D , et al. Amorphous MnOx modified Co3O4 for formaldehyde oxidation: improved low-temperature catalytic and photothermocatalytic activity. Chemical Engineering Journal, 2016,284:21-27. |
[22] | GUO Y Y, ZHANG S, MU W T , et al. Methanol total oxidation as model reaction for the effects of different Pd content on Pd-Pt/CeO2-Al2O3-TiO2 catalysts. Molecular Catalysis, 2017,429:18-26. |
[23] | CLEARFIELD A, THAKUR D S . Zirconium and titanium phosphates as catalysts: a review. Applied Catalysis, 1986,26:1-26. |
[24] | YU J C, ZHANG L Z, ZHENG Z , et al. Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chemistry of Materials, 2003,15(11):2280-2286. |
[25] | KŐRÖSI L, OSZKÓ A, GALBÁCS G , et al. Structural properties and photocatalytic behaviour of phosphate-modified nanocrystalline titania films. Applied Catalysis B: Environmental, 2007,77(1/2):175-183. |
[26] | KÖRÖSI L, PAPP S, BERTÓTI I , et al. Surface and bulk composition, structure, and photocatalytic activity of phosphate-modified TiO2. Chemistry of Materials, 2007,19(19):4811-4819. |
[27] | MASLOVA M V, RUSANOVA D, NAYDENOV V , et al. Synthesis, characterization, and sorption properties of amorphous titanium phosphate and silica-modified titanium phosphates. Inorganic Chemistry, 2008,47(23):11351-11360. |
[28] | ZHU Y L, ZHOU W, SUNARSO J , et al. Phosphorus-doped perovskite oxide as highly efficient water oxidation electrocatalyst in alkaline solution. Advanced Functional Materials, 2016,26(32):5862-5872. |
[29] | HEO Y W, PARK S J, IP K , et al. Transport properties of phosphorus-doped ZnO thin films. Applied Physics Letters, 2003,83(6):1128-1130. |
[30] | YIN G H, BI Q Y, ZHAO W , et al. Efficient conversion of CO2 to methane photocatalyzed by conductive black titania. ChemCatChem, 2017,9(23):4389-4396. |
[31] | PLUMEJEAU S, RIVALLIN M, BROSILLON S , et al. The reductive dehydration of cellulose by solid/gas reaction with TiCl4 at low temperature: a cheap, simple, and green process for preparing anatase nanoplates and TiO2/C composites. Chemistry-A European Journal, 2016,22(48):17262-17268. |
[32] | REN T Z, YUAN Z Y, AZIOUNE A , et al. Tailoring the porous hierarchy of titanium phosphates. Langmuir, 2006,22(8):3886-3894. |
[33] | YOSHIDA H, YAZAWA Y, HATTORI T . Effects of support and additive on oxidation state and activity of Pt catalyst in propane combustion. Catalysis Today, 2003,87(1-4):19-28. |
[34] | TIERNAN M J, FINLAYSON O E . Effects of ceria on the combustion activity and surface properties of Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 1998,19(1):23-25. |
[35] | LYKHACH Y, FAISAL F SKÁLA T , et al. Interplay between the metal-support interaction and stability in Pt/Co3O4(111) model catalysts. Journal of Materials Chemistry A, 2018,6:23078-23086. |
[36] | ZHANG C B, HE H, TANAKA KI . Catalytic performance and mechanism of a Pt/TiO2 catalyst for the oxidation of formaldehyde at room temperature. Applied Catalysis B: Environmental, 2006,65:37-43. |
[37] | RAHMANI F, HAGHIGHI M, ESTIFAEE P . Synthesis and characterization of Pt/Al2O3-CeO2 nanocatalyst used for toluene abatement from waste gas streams at low temperature: conventionalvs. plasma-ultrasound hybrid synthesis methods. Microporous and Mesoporous Materials, 2014,185(1):213-223. |
[38] | CHEN C Y, CHEN F, ZHANG L , et al. Importance of platinum particle size for complete oxidation of toluene over Pt/ZSM-5 catalysts. Chemical Communications, 2015,51:5936-5938. |
[39] | LI S M, HAO Q L, ZHAO R Z , et al. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts. Chemical Engineering Journal, 2016,285:536-543. |
[40] | CARABINEIRO S A C, CHEN X, MARTYNYUK O , et al. Gold supported on metal oxides for volatile organic compounds total oxidation. Catalysis Today, 2015,244:103-114. |
[1] | 秦娟, 梁丹丹, 孙军, 杨金凤, 郝永鑫, 李清连, 张玲, 许京军. 提拉法生长平肩同成分铌酸锂晶体的研究[J]. 无机材料学报, 0, (): 67-. |
[2] | 王志强, 吴济安, 陈昆峰, 薛冬峰. 大尺寸Er,Yb:YAG单晶的生长及其性能[J]. 无机材料学报, 2023, 38(3): 329-334. |
[3] | 徐婷婷, 李云云, 王谦, 王京康, 任国浩, 孙大志, 吴云涛. 低成本溶液法制备厘米级Cs3Cu2I5单晶及其闪烁发光性能[J]. 无机材料学报, 2022, 37(10): 1129-1134. |
[4] | 孙鹏, 张绍宁, 毕辉, 董武杰, 黄富强. 基于结构调节碳材料的掺氮种类和含量及其超级电容器储能应用[J]. 无机材料学报, 2021, 36(7): 766-772. |
[5] | 黄冲,赵伟,王东,卜克军,王思顺,黄富强. Pd插层NbSe2化合物的制备、晶体结构和电学性质研究[J]. 无机材料学报, 2020, 35(4): 505-510. |
[6] | 王东海, 薛艳艳, 李纳, 周仕明, 徐晓东, 李东振, 徐军, 王庆国. 导模法生长微孔蓝宝石晶体工艺及性能研究[J]. 无机材料学报, 2019, 34(12): 1290-1294. |
[7] | 张兴旺, 高孟磊, 孟军华. 介质衬底上生长h-BN二维原子晶体的研究进展[J]. 无机材料学报, 2019, 34(12): 1245-1256. |
[8] | 王杨, 朱嘉琦, 扈忠波, 代兵. 铱衬底上异质外延单晶金刚石: 过程与机理[J]. 无机材料学报, 2019, 34(9): 909-917. |
[9] | 王远, 林杰, 常郑, 林天全, 钱猛, 黄富强. 基于三维石墨烯衬底的纳米片状水合氧化钌:电化学沉积制备以及柔性超级电容器储能应用[J]. 无机材料学报, 2019, 34(4): 455-460. |
[10] | 楚增勇, 李高林, 蒋振华, 王春华. 高质量钙钛矿单晶CH3NH3PbI3研究进展[J]. 无机材料学报, 2018, 33(10): 1035-1045. |
[11] | 王东, 贺剑桥, 赖晓芳, 黄荣铁, 施鹰, 徐丽, 黄富强. Na1.88Bi1.88S4和Na1.36Ca1.28Bi1.36S4单晶制备与结构及其光学性能表征[J]. 无机材料学报, 2018, 33(1): 100-106. |
[12] | 王万富, 苏 静, 雷 勇, 仲 坤, 王 迪. 溶液法CH3NH3PbCl3单晶的生长与性能研究[J]. 无机材料学报, 2016, 31(10): 1063-1067. |
[13] | 张国栋, 李春龙, 王善朋, 张 翔, 张西霞, 陶绪堂. CdSiP2晶体中光散射颗粒的研究[J]. 无机材料学报, 2014, 29(8): 855-858. |
[14] | 范修军, 王 越, 徐 宏. A:Al2O3(A=Cr, Fe, Ni)晶体生长及其缺陷研究[J]. 无机材料学报, 2011, 26(12): 1266-1272. |
[15] | 杨天天, 许鹏程, 左国民, 李昕欣. 自组装单层膜模板控制生长氧化亚铜晶体及其对DMMP气体的检测[J]. 无机材料学报, 2011, 26(10): 1111-1115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||