[1] |
WANG Z L . ZnO nanowire and nanobelt platform for nano- technology. Mat. Sci. Eng. R, 2009,64(3):33-71.
|
[2] |
MANEKKATHODI A, LU M Y, WANG C W , et al. Direct growth of aligned zinc oxide nanorods on paper substrates for low-cost flexible electronics. Adv. Mater., 2010,22(22):4059-4063.
|
[3] |
VAYSSIERES L . Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater., 2003,15(5):464-466.
|
[4] |
LIANG J R, ZHANG Y, YANG R ,et al. Room-temperature NH3 gas sensing property of VO2(B)/ZnO hierarchical heterogeneous composite with nanorod structure. J. Inorg. Mater., 2018,33(12):1323-1329.
|
[5] |
NING Y, ZHANG Z M, TENG F , et al. Novel transparent and self-powered UV photodetector based on crossed ZnO nanofiber array homojunction. Small, 2018,14(13):1703754.
|
[6] |
HU K, TENG F, ZHENG L X , et al. Binary response Se/ZnO p-n heterojunction UV photodetector with high on/off ratio and fast speed. Laser Photonics Rev., 2017,11(1):1600257.
|
[7] |
TSAI D S, LIN C A, LIEN W C , et al. Ultra-high-responsivity broadband detection of Si metal-semiconductor-metal Schottky photodetectors improved by ZnO nanorod arrays. ACS Nano, 2011,5(10):7748-7753.
|
[8] |
YIN Z Y, WANG Z, DU Y P , et al. Full solution-processed synthesis of all metal oxide-based tree-like heterostructures on fluorine- doped tin oxide for water splitting. Adv. Mater., 2012,24(39):5374-5378.
|
[9] |
NIE B, HU J G, LUO L B , et al. Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. Small, 2013,9(17):2872-2879.
|
[10] |
HATCH S M, BRISCOE J, DUNN S . A self-powered ZnO nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater., 2013,25(6):867-871.
|
[11] |
LI S B, XU J P, SHI S B , et al. UV photoresponse properties of ZnO nanorods arrays deposited with CuSCN by SILAR method. Chem. Phys. Lett., 2015,620:50-55.
|
[12] |
BIE Y Q, LIAO Z M, ZHANG H Z , et al. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater., 2011,23(5):649-653.
|
[13] |
LEE T I, LEE S H, KIM Y D , et al. Playing with dimensions: rational design for heteroepitaxial p-n junctions. Nano Lett., 2011,12(1):68-76.
|
[14] |
FORTICAUX A, HACIALIOGLU S, DEGRAVE J P ,et al. Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano, 2013,7(9):8224-8232.
|
[15] |
DEKKERS M, RIJNDERS G, BLANK D H . ZnIr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d 6- transition metal oxide. Appl. Phys. Lett., 2007,90(2):021903.
|
[16] |
KIM S, CIANFRONE J A, SADIK P , et al. Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide. J. Appl. Phys., 2010,107(10):103538.
|
[17] |
KIM H J, SONG I C, SIM J H , et al. Structural and transport properties of cubic spinel ZnCo2O4 thin films grown by reactive magnetron sputtering. Solid State Commun., 2004,129(10):627-630.
|
[18] |
QIU Y C, YANG S H, DENG H , et al. A novel nanostructured spinel ZnCo2O4 electrode material: morphology conserved transformation from a hexagonal shaped nanodisk precursor and application in lithium ion batteries. J. Mater. Chem., 2010,20(21):4439-4444.
|
[19] |
SHARMA Y, SHARMA N, SUBBA RAO G V, , et al. Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater., 2007,17(15):2855-2861.
|
[20] |
WEI X H, CHEN D H, TANG W J . Preparation and characterization of the spinel oxide ZnCo2O4 obtained by Sol-Gel method. Mater. Chem. Phys., 2007,103(1):54-58.
|
[21] |
HU L F, MA R Z, OZAWA T C , et al. Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface. Chem. Commun., 2008,40(40):4897-4899.
|
[22] |
HU L F, MA R Z, OZAWA T C ,et al. Oriented monolayer film of Gd2O3:0.05Eu crystallites: quasi-topotactic transformation of the hydroxide film and drastic enhancement of photoluminescence properties. Angew. Chem. Int. Ed., 2009,48(21):3846-3849.
|
[23] |
BAE J, SONG M K, PARK Y J , et al. Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. Angew. Chem. Int. Ed., 2011,50(7):1683-1687.
|
[24] |
XU S, ADIGA N, BA S , et al. Optimizing and improving the growth quality of ZnO nanowire arrays guided by statistical design of experiments. ACS Nano, 2009,3(7):1803-1812.
|
[25] |
LADANOV M, ALGARIN-AMARIS P, VILLALBA P ,et al. Effects of the physical properties of atomic layer deposition grown seeding layers on the preparation of ZnO nanowires. J. Phys. Chem. Solids, 2013,74(11):1578-1588.
|
[26] |
SONG J, LIM S . Effect of seed layer on the growth of ZnO nanorods. J. Phys. Chem. C, 2007,111(2):596-600.
|
[27] |
XU S, WANG Z L . One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res., 2011,4(11):1013-1098.
|
[28] |
BIELINSKI A R, KAZYAK E, SCHLEPÜTZ C M , et al. Hierarchical ZnO nanowire growth with tunable orientations on versatile substrates using atomic layer deposition seeding. Chem. Mater., 2015,27(13):4799-4807.
|
[29] |
XU X J, CHEN J X, CAI S , et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater., 2018,30(43):1803165.
|
[30] |
ZHAO B, WANG F, CHEN H Y , et al. An ultrahigh responsivity (9.7 mA·W-1) self-powered solar-blind photodetector based on individual ZnO-Ga2O3 heterostructures. Adv. Funct. Mater., 2017,27(17):1700264.
|