无机材料学报 ›› 2019, Vol. 34 ›› Issue (9): 997-1003.DOI: 10.15541/jim20180550
收稿日期:
2018-11-26
修回日期:
2019-01-16
出版日期:
2019-09-20
网络出版日期:
2019-05-29
作者简介:
胡 浩(1992-), 男, 硕士研究生. E-mail: 1980988765@qq.com
基金资助:
HU Hao,JIANG Xiang-Ping(),CHEN Chao,NIE Xin,HUANG Xiao-Kun,SU Chun-Yang
Received:
2018-11-26
Revised:
2019-01-16
Published:
2019-09-20
Online:
2019-05-29
Supported by:
摘要:
采用固相法制备了Ce 3+掺杂的Na0.5Bi8.5-xCexTi7O27(NBT-BIT-xCe, 0≤x≤0.1)共生铋层状无铅压电陶瓷, 研究了NBT-BIT-xCe陶瓷的结构和电学性能。研究结果表明所有陶瓷样品均为单一的铋层状结构, 随Ce 3+掺杂量的增加, 样品的畸变程度呈现上升趋势, 同时陶瓷晶粒的平均尺寸不断减小, 介温谱和差热分析结果表明样品的介电双峰均对应于陶瓷内部结构的铁电相变。Ce 3+掺杂可以显著减少陶瓷内部的氧空位浓度以及降低陶瓷的介电损耗, 提升陶瓷的压电常数(d33), 当x=0.06时, 陶瓷的综合电性能最佳: 压电常数(d33)达到27.5 pC/N, 居里温度(TC)达到658.2 ℃, 介电损耗(tanδ)为0.39%。
中图分类号:
胡浩, 江向平, 陈超, 聂鑫, 黄枭坤, 苏春阳. Ce 3+掺杂Na0.5Bi8.5Ti7O27铋层状陶瓷的结构与电性能研究[J]. 无机材料学报, 2019, 34(9): 997-1003.
HU Hao, JIANG Xiang-Ping, CHEN Chao, NIE Xin, HUANG Xiao-Kun, SU Chun-Yang. Influence of Ce 3+ Substitution on the Structure and Electrical Characteristics of Bismuth-layer Na0.5Bi8.5Ti7O27 Ceramics[J]. Journal of Inorganic Materials, 2019, 34(9): 997-1003.
Compound | a/nm | b/nm | c/nm | V/nm3 | Orthorhombicity |
---|---|---|---|---|---|
NBT-BIT | 0.5421138 | 0.5449559 | 7.3766121 | 2.179259 | 0.005230 |
NBT-BIT-0.04Ce | 0.5422069 | 0.5450802 | 7.3880188 | 2.183502 | 0.005290 |
NBT-BIT-0.06Ce | 0.5420991 | 0.5451425 | 7.3788872 | 2.180618 | 0.005600 |
NBT-BIT-0.07Ce | 0.5420621 | 0.5451272 | 7.3959427 | 2.185448 | 0.005640 |
NBT-BIT-0.08Ce | 0.5425093 | 0.5456971 | 7.3701042 | 2.181888 | 0.005858 |
NBT-BIT-0.10Ce | 0.5421451 | 0.5453683 | 7.3819908 | 2.182624 | 0.005930 |
表1 NBT-BIT-xCe陶瓷样品的晶胞参数
Table 1 Lattice parameters of NBT-BIT-xCe ceramics
Compound | a/nm | b/nm | c/nm | V/nm3 | Orthorhombicity |
---|---|---|---|---|---|
NBT-BIT | 0.5421138 | 0.5449559 | 7.3766121 | 2.179259 | 0.005230 |
NBT-BIT-0.04Ce | 0.5422069 | 0.5450802 | 7.3880188 | 2.183502 | 0.005290 |
NBT-BIT-0.06Ce | 0.5420991 | 0.5451425 | 7.3788872 | 2.180618 | 0.005600 |
NBT-BIT-0.07Ce | 0.5420621 | 0.5451272 | 7.3959427 | 2.185448 | 0.005640 |
NBT-BIT-0.08Ce | 0.5425093 | 0.5456971 | 7.3701042 | 2.181888 | 0.005858 |
NBT-BIT-0.10Ce | 0.5421451 | 0.5453683 | 7.3819908 | 2.182624 | 0.005930 |
图4 (a)陶瓷表面OH吸附示意图; (i)表面的M-OH, (ii)由破坏的M-O形成的M-OH, (iii)由表面氧空位形成的Vo-OH; (b)NBT-BIT陶瓷样品O1s窄扫高分辨XPS图谱
Fig. 4 (a) Diagram of OH adsorption on ceramic surface: (i) surface M-OH; (ii) M-OH formed from broken M-O; (iii) Vo-OH formed from surface oxygen vacancies; (b) high resolution O1s XPS spectra of NBT-BIT ceramics
Sample | OV | OL | OV/OL |
---|---|---|---|
NBT-BIT | 76.10 | 23.90 | 3.18 |
NBT-BIT-0.06Ce | 53.47 | 46.53 | 1.15 |
表2 XPS曲线中OV和OL峰的参数
Table 2 Parameters of OV and OL peaks in XPS curves
Sample | OV | OL | OV/OL |
---|---|---|---|
NBT-BIT | 76.10 | 23.90 | 3.18 |
NBT-BIT-0.06Ce | 53.47 | 46.53 | 1.15 |
图5 NBT-BIT-xCe陶瓷样品的SEM照片和晶粒尺寸分布图
Fig. 5 SEM images and grain size distribution for NBT-BIT-xCe ceramic samples (a) x=0.00; (b) x=0.04; (c) x=0.06; (d) x=0.08; (e) x=0.10
图7 NBT-BIT-xCe陶瓷样品在100 kHz频率下介电常数和介电损耗随温度的变化曲线
Fig. 7 The curves of dielectric constant and dielectric loss varied with temperature for NBT-BIT-xCe ceramic samples at 100 kHz
图8 NBT-BIT-xCe陶瓷样品在不同温度下的复阻抗图
Fig. 8 Complex impedance plots of NBT-BIT-xCe ceramics at different temperatures (a) x=0.00; (b) x=0.04; (c) x=0.06; (d) x=0.07; (e) x=0.08; (f) x=0.10
[1] | KIKUCHI T . Synthesis of new layered bismuth titanates Bi7Ti4NbO21 and Bi6Ti3WO18. Journal of the Less-Common Metals, 1976,48(2):319-323. |
[2] | YOKOI A, SUGISHITA J . Ferroelectric properties of mixed bismuth layer-structured Na0.5Bi8.5Ti7O27 ceramic and SrxNa0.5-x/2Bi8.5-x/2Ti7O27 solid solutions. Journal of Alloys & Compounds, 2008,452(2):467-472. |
[3] | JIANG X P, JIANG Y L, JIANG X A , et al. Electrical analysis of inter-growth structured Bi4Ti3O12-Na0.5Bi4.5Ti4O15 ceramics. Chinese Physics B, 2017,26(7):386-392. |
[4] | PARK B H, KANG B S, BU S D , et al. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999,401(6754):682-684. |
[5] | ZHANG S, YU F . Piezoelectric materials for high temperature sensors. Journal of the American Ceramic Society, 2011,94(10):3153-3170. |
[6] | JIANG Y L, JIANG X P, CHEN C ,et al. Structural and electrical properties of La3+-doped Na0.5Bi4.5Ti4O15-Bi4Ti3O12 inter-growth high temperature piezoceramics. Ceramics International, 2017,43(8):6446-6452. |
[7] | SARAH P . Electric properties of holmium substituted SrBi4Ti4O15 ceramic for high temperature piezoelectric applications. Procedia Engineering, 2011,10(7):2684-2689. |
[8] | WANG C M, WANG J F, MAO C ,et al. Enhanced dielectric and piezoelectric properties of Aurivillius-type potassium bismuth titanate ceramics by cerium modification. Journal of the American Ceramic Society, 2008,91(9):3094-3097. |
[9] | ZHAO L, XU J X, YIN N ,et al. Microstructure, dielectric, and piezoelectric properties of Ce-modified Na0.5Bi4.5Ti4O15 high temperature piezoceramics. Physica Status Solidi (RRL) - Rapid Research Letters, 2008,2(3):111-113. |
[10] | SUÁREZ DONAJÍ Y, REANEY I M, LEE W E . Relation between tolerance factor and Tc in Aurivillius compounds. Journal of Materials Research, 2001,16(11):3139-3149. |
[11] | SHANNON R D . Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, 2015,32(1/2):751-767. |
[12] | LIU J J, ZOU G T, JIN Y R . Raman scattering study of Na0.5Bi4.5Ti4O15 and its solid solutions. Journal of Physics and Chemistry of Solids, 1996,57:1653-1658. |
[13] | WANG W, GU S P, MAO X Y ,et al. Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12- SrBi4Ti4O15. Journal of Applied Physics, 2007,102:024102. |
[14] | MARTÍN-CARRÓN L, ANDRÉS A D, MARTÍNEZ-LOPE M J ,et al. Raman phonons and light scattering in RMnO3,(R=La, Pr, Nd, Ho, Er Tb and Y) orthorhombic and hexagonal manganites. Journal of Alloys & Compounds, 2001,323(1):494-497. |
[15] | LAHMAR A, HABOUTI S, DIETZE M ,et al. Effects of rare earth manganites on structural, ferroelectric, and magnetic properties of BiFeO3 thin films. Applied Physics Letters, 2009,94(1):0141106. |
[16] | SHAO C, LU Y, WANG D ,et al. Effect of Nd substitution on the microstructure and electrical properties of Bi7Ti4NbO21 piezoceramics. Journal of the European Ceramic Society, 2012,32(14):3781-3789. |
[17] | WANG L, REN W, MA W ,et al. Improved electrical properties for Mn-doped lead-free piezoelectric potassium sodium niobate ceramics. AIP Advances, 2015,5(9):66-51. |
[18] | CHAKRABART AI, BERA J . Structure and relaxor behavior of BaBi4Ti4-xZrxO15 ceramics. Current Applied Physics, 2010,10:574-579. |
[19] | LUO B, DONG H, WANG D , et al. Large recoverable energy density with excellent thermal stability in Mn-modified NaNbO3- CaZrO3 lead-free thin films. Journal of the American Ceramic Society, 2018,101(8):3460-3467. |
[20] | KANG H B, CHANG J, KOH K ,et al. High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Applied Materials & Interfaces, 2014,6(13):10576. |
[21] | WU S M, LIU X L, LIAN X L ,et al. Homojunction of oxygen and titanium vacancies and its interfacial n-p effect. Advanced Materials, 2018,30(32):e1802173. |
[22] | FEI L, ZHOU Z, HUI S ,et al. Electrical properties of CaBi4Ti4O15-Bi4Ti3O12 piezoelectric ceramics. Ceramics International, 2015,41(8):9729-9733. |
[23] | FEI L, ZHOU Z, HUI S ,et al. Structure and electrical properties of lanthanum-doped CaBi4Ti4O15-Bi4Ti3O12 intergrowth ferroelectric. Materials Letters, 2015,156:165-168. |
[24] | DURÁN-MARTÍN P, CASTRO A . Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9. Journal of Materials Research, 1998,13(9):2565-2571. |
[25] | EZHILVALAVAN S, XUE J M, WANG J . Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics. Materials Chemistry & Physics, 2002,75(1):50-55. |
[26] | KUMAR S, VARMA K B R . Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. Journal of Physics D: Applied Physics, 2009,42:075405. |
[27] | KUMAR S, VARMA K B R . Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. Journal of Physics D: Applied Physics, 2009,42(7):075405. |
[28] | MIYAYAMA M, NOGUCHI Y . Polarization properties and oxygen- vacancy distribution of SrBi2Ta2O9 ceramics modified by Ce and Pr. Journal of the European Ceramic Society, 2005,25(12):2477-2482. |
[29] | DIAO C L, ZHENG H W, ZHANG Y G ,et al. Structure, photoluminescence and electrical properties of BaBi3.5Eu0.5Ti4O15 ceramics. Ceramics International, 2014,40(9):13827-13832. |
[30] | MOURE A, PARDO L . Microstructure and texture dependence of the dielectric anomalies and dc conductivity of Bi3TiNbO9 ferroelectric ceramics. Journal of Applied Physics, 2015,97:084103. |
[31] | XU Q, LANAGAN M T, LUO W ,et al. Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3. Journal of the European Ceramics Society, 2016,36:2469-2477. |
[32] | PRIBOŠIČ I, MAKOVEC D, DROFENIK M . Electrical properties of donor- and acceptor-doped BaBi4Ti4O15. Journal of the European Ceramic Society, 2001,21(10):1327-1331. |
[33] | BUESSEM W R, CROSS L E, GOSWAMI A K . Effect of two- dimensional pressure on the permittivity of fine-and coarse-grained barium titanate. Journal of the American Ceramic Society, 1966,49(1):2926-2929. |
[34] | ZHANG L N, LI G R, ZHAO S C ,et al. Electrical behavior of Nb-doped Bi4Ti3O12 layer-structured ferroelectric ceramice. Journal of Inorganic Materials, 2005,20(6):1389-1395. |
[1] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[2] | 南博, 臧佳栋, 陆文龙, 杨廷旺, 张升伟, 张海波. 增材制造压电陶瓷研究进展[J]. 无机材料学报, 2022, 37(6): 585-595. |
[3] | 田俊亭, 李晓兵, 丁伟艳, 聂生东, 梁柱. 软模板法制备高频超声换能器用1-3复合压电材料[J]. 无机材料学报, 2022, 37(5): 507-512. |
[4] | 王新健, 朱逸璇, 张鹏, 杨文龙, 王挺, 郇宇. (Ba0.85Ca0.15)(Ti0.9Zr0.1-xSnx)O3无铅压电陶瓷的相结构与压电性能[J]. 无机材料学报, 2022, 37(5): 513-519. |
[5] | 刘凯, 孙策, 史玉升, 胡佳明, 张庆庆, 孙云飞, 章嵩, 涂溶, 闫春泽, 陈张伟, 黄尚宇, 孙华君. 增材制造压电陶瓷的现状与展望[J]. 无机材料学报, 2022, 37(3): 278-288. |
[6] | 焦志翔, 贾帆豪, 王永晨, 陈建国, 任伟, 程晋荣. 基于机器学习的BiFeO3-PbTiO3-BaTiO3固溶体居里温度预测[J]. 无机材料学报, 2022, 37(12): 1321-1328. |
[7] | 张文进, 申倩倩, 薛晋波, 李琦, 刘旭光, 贾虎生. 具有高度有序氧空位的α-Fe2O3纳米带的制备及光电催化水氧化性能研究[J]. 无机材料学报, 2021, 36(12): 1290-1296. |
[8] | 李鹏鹏, 王兵, 王应德. 基于火焰退火多孔CeO2纳米片的环境监测用超快CO气体传感器[J]. 无机材料学报, 2021, 36(11): 1223-1230. |
[9] | 刘亚鑫, 王敏, 沈梦, 王强, 张玲霞. 铋掺杂提高氧化铈中氧空位浓度增强CO2光催化还原性能[J]. 无机材料学报, 2021, 36(1): 88-94. |
[10] | 伍凡, 赵梓俨, 黎邦鑫, 董帆, 周莹. Bi2O2CO3/PPy界面氧空位构建及其可见光下NO氧化机理研究[J]. 无机材料学报, 2020, 35(5): 541-548. |
[11] | 李金, 刘廷禹, 姚舒安, 付明雪, 鲁晓晓. 第一原理研究LuPO4中氧空位的性质[J]. 无机材料学报, 2019, 34(8): 879-884. |
[12] | 苏春阳, 江向平, 陈超, 胡浩, 刘芳, 郑来奇. 0.94Na1/2Bi1/2TiO3-0.06BaTiO3:TiO2无铅复合陶瓷的结构及退极化温度研究[J]. 无机材料学报, 2019, 34(10): 1085-1090. |
[13] | 周志勇, 陈涛, 董显林. 超高居里温度钙钛矿层状结构压电陶瓷研究进展[J]. 无机材料学报, 2018, 33(3): 251-258. |
[14] | 夏标军, 周志勇, 董显林. 过量Nb2O5对偏铌酸铅压电陶瓷烧结性能和电学性能的影响[J]. 无机材料学报, 2018, 33(11): 1248-1252. |
[15] | 孙丹丹, 张家良, 武燕庆, 张仲秋, 刘大康. 原料预处理对BaTiO3压电陶瓷的物性影响[J]. 无机材料学报, 2017, 32(6): 615-620. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||