[1] |
BELL L E . Cooling, heating, generating power and recovering waste heat with thermoelectric systems. Science, 2008,321(5895):1457-1461.
|
[2] |
CHAMPIER D . Thermoelectric generators: a review of applications. Energy Conversion and Management, 2017,140:167-181.
|
[3] |
CHEN L, BAI S, ZHANG Q . Technologies and applications of thermoelectric devices: current status, challenges and prospects. Journal of Inorganic Materials, 2019,34(3):279.
|
[4] |
SALES B C, MANDRUS D, WILLIAMS R K . Filled skutterudite antimonides: a new class of thermoelectric materials. Science, 1996,272:1325-1328.
|
[5] |
LIU H, SHI X, XU F , et al. Copper ion liquid-like thermoelectrics. Nature Materials, 2012,11(5):422-425.
|
[6] |
ZHAO L D, LO S H, ZHANG Y , et al. Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature, 2014,508(7496):373-377.
|
[7] |
ZHANG Q H, HUANG X Y, BAI S Q , et al. Thermoelectric devices for power generation: recent progress and future challenges. Advanced Engineering Materials, 2016,18(2):194-213.
|
[8] |
HE R, SCHIERNING G, NIELSCH K . Thermoelectric devices: a review of devices, architectures, and contact optimization. Advanced Materials Technologies, 2018,3(4):1700256.
|
[9] |
ZHANG Q, LIAO J, TANG Y , et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy- loss minimized integration. Energy Environ. Sci., 2017,10(4):956-963.
|
[10] |
YAO Z, QIU P, LI X , et al. Investigation on quick fabrication of n-type filled skutterudites. Journal of Inorganic Materials, 2016,31(12):1375-1382.
|
[11] |
RAVI V, FIRDOSY S, CAILLAT T , et al. Mechanical properties of thermoelectric skutterudites. AIP Conference Proceedings, 2008,969:656-662.
|
[12] |
SALVADOR J R, YANG J, SHI X , et al. Transport and mechanical properties of Yb-filled skutterudites. Philosophical Magazine, 2009,89(19):1517-1534.
|
[13] |
DAHAL T, KIM H S, GAHLAWAT S , et al. Transport and mechanical properties of the double-filled p-type skutterudites La0.68Ce0.22Fe4-xCoxSb12. Acta Materialia, 2016,117:13-22.
|
[14] |
RUAN Z, LIU L, ZHAI P , et al. Residual strength degradation of CoSb3 skutterudite compounds under low-cycle fatigue loading. Journal of Electronic Materials, 2012,41(6):1487-1492.
|
[15] |
WEN P, ZHU Y, CHEN J , et al. The microstructure and thermoelectric properties of Yb-filled skutterudite Yb0.1Co4Sb12 under cyclic thermal loading. Journal of Materials Engineering and Performance, 2016,25(11):4764-4768.
|
[16] |
ZHAO D, LI X, HE L , et al. Interfacial evolution behavior and reliability evaluation of CoSb(3)/Ti/Mo-Cu thermoelectric joints during accelerated thermal aging. Journal of Alloys and Compounds, 2009,477(1/2):425-431.
|
[17] |
SHI L, HUANG X, GU M , et al. Interfacial structure and stability in Ni/SKD/Ti/Ni skutterudite thermoelements. Surface and Coatings Technology, 2016,285:312-317.
|
[18] |
FAN X C, GU M, SHI X , et al. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints. Ceramics International, 2015,41(6):7590-7595.
|
[19] |
WOJCIECHOWSKI K T, ZYBALA R, MANIA R . High temperature CoSb3-Cu junctions. Microelectronics Reliability, 2011,51(7):1198-1202.
|
[20] |
GU M, XIA X, LI X , et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. Journal of Alloys and Compounds, 2014,610:665-670.
|
[21] |
TANG Y S, BAI S Q, REN D D , et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder. Journal of Inorganic Materials, 2015,30(3):256-260.
|
[22] |
GU M, BAI S, WU J , et al. A high throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules. Journal of Materials Research, 2019,34(7):1179-1187.
|
[23] |
CHEN L, BAI S, LIU R , et al. Interface stability of skutterudite thermoelectric materials/Ti88Al12. Journal of Inorganic Materials, 2018,33(8):889-894.
|
[24] |
EL-GENK M S, SABER H H, CAILLAT T , et al. Tests results and performance comparisons of coated and un-coated skutterudite based segmented unicouples. Energy Conversion and Management, 2006,47(2):174-200.
|
[25] |
HSUEH C H . Thermal stresses in elastic multilayer systems. Thin Solid Films, 2002,418:182-188.
|
[26] |
HAN M, HUANG J, CHEN S . The influence of interface morphology on the stress distribution in double-ceramic-layer thermal barrier coatings. Ceramics International, 2015,41(3):4312-4325.
|
[27] |
LI Y, YANG X Q, ZHAI P C , et al. Thermal stress simulation and optimum design of CoSb3/Bi2Te3 thermoelectric unicouples with graded interlayers. AIP Conference Proceedings, 2008,973:297-302.
|
[28] |
JIA X, GAO Y . Estimation of thermoelectric and mechanical performances of segmented thermoelectric generators under optimal operating conditions. Applied Thermal Engineering, 2014,73(1):335-342.
|
[29] |
GU M, XIA X, HUANG X , et al. Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. Journal of Alloys and Compounds, 2016,671:238-244.
|