[1] |
MEHDI S S, KHORASANI M T, EHSAN D K , et al. Synthesis methods for nanosized hydroxyapatite with diverse structures. Acta Biomater., 2013; 9(8):7591-7621.
DOI
URL
PMID
|
[2] |
BASHA R Y, SAMPATH K T S, DOBLE M . Design of biocomposite materials for bone tissue regeneration. Mater. Sci. Eng. C, 2015,57:452-463.
DOI
URL
PMID
|
[3] |
FACCA S, LAHIRI D, FIORETTI F , et al. In vivo osseointegration of nanodesigned composite coatings on titanium implants. ACS Nano, 2011,5(6):4790-4799.
DOI
URL
PMID
|
[4] |
RHAITI H, LAGHZIZIL A, SAOIABI A , et al. Surface properties of porous hydroxyapatite derived from natural phosphate. Mater. Chem. Phys., 2012,136(2):1022-1026.
|
[5] |
ZHANG C Y, ZHANG S Y, LIU X P , et al. Degradation behavior of MgF2/HA composite coating on magnesium alloy in vitro. The Chinese Journal of Nonferrous Metals, 2018,28(4):766-773.
|
[6] |
LEMOS A F, ROCHA J H G, FERREIRA J M F , et al. Hydroxyapatite nano-powders produced hydrothermally from nacreous material.Journal of the European Ceramic Society. 2006, 26(16):3639-3646.
|
[7] |
VECCCHIO K S, ZHANG X, MASSIE J B , et al. Conversion of bulk seashells to biocompatible hydroxyapatite for bone implants. Acta Biomaterials, 2007,3(6):910-918.
DOI
URL
PMID
|
[8] |
LANDI E, CELOTTI G, LOGROSCINO G , et al. Carbonated hydroxyapatite as bone substitute. Journal of the European Ceramic Society, 2003,23(15):2931-2937.
|
[9] |
LI L, ZHU Y J, CAO S W , et al. Preparation and drug release properties of nanostructured CaCO3 porous hollow microspheres. Journal of Inorganic Materials, 2009,24(1):166-170.
|
[10] |
GUAN J K, XU Z Y, CHEN B , et al. Preparation and properties of nanometer calcium carbonate/poly (L-lactide) composite materials. Journal of Clinical Rehabilitative Tissue Engineering Research, 2008,12(10):1889-1891.
|
[11] |
ZHAO H, CHEN Y, LI Z M , et al. Preparation of nanoribbon hydroxyapatite from discarded shells. Gansu Science and Technology, 2016,32(17):50-52.
|
[12] |
XUE Q H, XING Y Z, ZHANG Q Q . Preparation technology of oyster hydroxyapatite porous material for bone repair. Int. J. Biomed. Eng., 2018,41(4):291-295.
|
[13] |
YANG S L, GAO Q, WANG H T . Theoretical prediction of ring strain energies of several carbon-monocyclic and carbon-dicyclic compounds. Journal of Natural Science of Heilongjiang University, 2010,27(4):495-499.
DOI
URL
PMID
|
[14] |
RUJITANAPANICH S, KUMPAPAN P, WANJANOI P , et al. Synthesis of hydroxyapatite from oyster shell via precipitation method. Energy Proc., 2014, ( 56):112-117.
|
[15] |
AKRAM M, AHMED R, SHAKIR I , et al. Extracting hydroxyapatite and its precursors from natural resources. J. Mater. Sci. 2014; 49(4):1461-1475.
|
[16] |
NAYAR S, GUHA A . Waste utilization for the controlled synthesis of nanosized hydroxyapatite. Mater. Sci. Eng., 2009,29(4):1326-1329.
|
[17] |
LANDI E, SPRIO S, SANDRI M , et al. Development of Sr and CO3 co-substituted hydroxyapatites for biomedical applications. Acta Biomaterialia, 2008,4(3):656-663.
DOI
URL
PMID
|
[18] |
MEEJOO S, MANEEPRAKORN W, WINOTAI P . Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating. Thermochimica Acta, 2006,447(1):115-120.
DOI
URL
|
[19] |
HU GF, XIAO LW, FU H , et al. Study on injectable and degradable cement of calcium sulphate and calcium phosphate for bone repair. Journal of Materials Science: Materials in Medicine, 2010,21(2):627-634.
DOI
URL
PMID
|
[20] |
QI X, YE J, WANG Y . Improved injectability and in vitro degradation of a calcium phosphate cement containing poly (lactide-co- glycolide) microspheres. Acta Biomaterialia, 2008,4(6):1837-1845.
DOI
URL
PMID
|
[21] |
SRINATH PALAKURTHY, VENU GOPAL REDDY K, RAJ KUMAR SAMUDRALA , et al. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science & Engineering, 2019,98:109-117.
DOI
URL
PMID
|