[1] |
BUSER D, SCHENK R K, STEINEMANN S , et al. Influence of surface characteristics on bone integration of titanium implants. a histomorphometric study in miniature pigs. Journal of Biomedical Materials Research, 1991,25(7):889-902.
|
[2] |
DABROWSKI B, SWIESZKOWSKI W, GODLINSKI D , et al. Highly porous titanium scaffolds for orthopaedic applications. Journal of Biomedical Materials Research Part B Applied Biomaterials, 2010,95B(1):53-61.
|
[3] |
CARINE V, YANN C, DIDIER L O , et al. Surface modification of titanium with phosphonic acid to improve bone bonding: characterization by XPS and ToF-SIMS. Langmuir, 2002,18(7):2582-2589.
|
[4] |
WANG X H, LI J S, HU R , et al. Mechanical properties and bioactive surface modification via alkali-heat treatment of porous titanium for biomedical applications. Advanced Materials Research, 2013,647:511-517.
|
[5] |
DAS K, BALLA V K, BANDYOPADHYAY A , et al. Surface modification of laser-processed porous titanium for load-bearing implants. Scripta Materialia, 2008,59(8):822-825.
|
[6] |
RAKHMATIA Y D, AYUKAWA Y, FURUHASHI A , et al. Current barrier membranes: titanium mesh and other membranes for guided bone regeneration in dental applications. J. Prosthodont. Res., 2013,57(1):3-14.
|
[7] |
MARBACHER S, ANDRES R H, FATHI A R , et al. Primary reconstruction of open depressed skull fractures with titanium mesh. Journal of Craniofacial Surgery, 2008,19(2):490-495.
|
[8] |
SCH N R, METZGER M C, ZIZELMANN C , et al. Individually preformed titanium mesh implants for a true-to-original repair of orbital fractures. International Journal of Oral & Maxillofacial Surgery, 2006,35(11):990-995.
|
[9] |
NAKASE H, PARK Y S, KIMURA H , et al. Complications and long-term follow-up results in titanium mesh cage reconstruction after cervical corpectomy. Journal of Spinal Disorders & Techniques, 2006,19(19):353-357.
|
[10] |
MARTIN M P, OLSON S . Post-operative complications with titanium mesh. Journal of Clinical Neuroscience, 2009,16(8):1080-1081.
|
[11] |
CARRAD A . Development of bioactive hydroxyapatite coatings on titanium alloys. Key Engineering Materials, 2012,533:183-193.
|
[12] |
LANGELIER B, WANG X, GRANDFIELD K . Atomic scale chemical tomography of human bone. Scientific Reports, 2017,7:39958.
|
[13] |
KANE R, MA P X . Mimicking the nanostructure of bone matrix to regenerate bone. Materials Today, 2013,16(11):418-423.
|
[14] |
HABIBOVIC P, YUAN H, VAN D D M , et al. Relevance of osteoinductive biomaterials in critical-sized orthotopic defect. Journal of Orthopaedic Research, 2010,24(5):867-876.
|
[15] |
LI C, VEPARI C, JIN H J , et al. Electrospun silk-BMP-2 scaffolds for bone tissue engineering. Biomaterials, 2006,27(16):3115-3124.
|
[16] |
MURPHY C M, SCHINDELER A, GLEESON J P , et al. A collagen- hydroxyapatite scaffold allows for binding and co-delivery of recombinant bone morphogenetic proteins and bisphosphonates. Acta Biomaterialia, 2014,10(5):2250-2258.
|
[17] |
GUO X, PARK H, YOUNG S , et al. Repair of osteochondral defects with biodegradable hydrogel composites encapsulating marrow mesenchymal stem cells in a rabbit model. Acta Biomaterialia, 2010,6(1):39-47.
|
[18] |
CHEN P C, XU Z K . Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation. Sci. Rep., 2013,3(6153):2776.
|
[19] |
USINSKAS P, STANKEVICIUTE Z, BEGANSKIENE A , et al. Sol-Gel derived porous and hydrophilic calcium hydroxyapatite coating on modified titanium substrate. Surface & Coatings Technology, 2016,307:935-940.
|
[20] |
CHA C, LIECHTY W B, KHADEMHOSSEINI A , et al. Designing biomaterials to direct stem cell fate. ACS Nano, 2012,6(11):9353-9358.
|
[21] |
LUTOLF M P, GILBERT P M, BLAU H M . Designing materials to direct stem-cell fate. Nature, 2009,462(7272):433-441.
|
[22] |
DOM NGUEZ-TRUJILLO C, PE N E, CHICARDI E , et al. Sol-Gel deposition of hydroxyapatite coatings on porous titanium for biomedical applications. Surface & Coatings Technology, 2017,333(15):158-162.
|
[23] |
PENG H, USAS A, OLSHANSKI A , et al. VEGF improves, whereas sFlt1 inhibits, BMP2-induced bone formation and bone healing through modulation of angiogenesis. Journal of Bone & Mineral Research, 2010,20(11):2017-2027.
|
[24] |
CHEN L, JIANG W, HUANG J , et al. Insulin-like growth factor 2(IGF-2) potentiates BMP-9-induced osteogenic differentiation and bone formation. Journal of Bone & Mineral Research, 2010,47(11):S432-S433.
|
[25] |
BOSE S, TARAFDER S . Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering: a review. Acta Biomaterialia, 2012,8(4):1401-1421.
|
[26] |
KHAN S N, BOSTROM M P, LANE J M . Bone growth factors. Orthopedic Clinics of North America, 2000,31(3):375-387.
|
[27] |
WANG Z, CHEN L, XU J , et al. Bioadhesive microporous architectures by self-assembling polydopamine microcapsules for biomedical applications. Chemistry of Materials, 2015,27(3):848-856.
|
[28] |
ZHANG C D, XIAO D Q, FU Y K , et al. Fabrication of nanostructured hierarchical coatings composed of calcium phosphate/ titanate on titanium substrate. Key Engineering Materials, 2014, 575-576:253-258.
|
[29] |
ZHAO H, DONG W, ZHENG Y , et al. The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds. Biomaterials, 2011,32(25):5837-5846.
|
[30] |
KOUTSOPOULOS S . Synthesis and characterization of hydroxyapatite crystals: a review study on the analytical methods. Journal of Biomedical Materials Research Part A, 2002,62(4):600-612.
|
[31] |
PALAZZO B, IAFISCO M, LAFORGIA M , et al. Biomimetic hydroxyapatite-drug nanocrystals as potential bone substitutes with antitumor drug delivery properties. Advanced Functional Materials, 2010,17(13):2180-2188.
|
[32] |
CAI L, LIN D, CHAI Y , et al. MBG scaffold containing chitosan microspheres as binary delivery system of IL-8 and BMP-2 for bone regeneration. Journal of Materials Chemistry B, 2018,6(27):4453-4465.
|
[33] |
LU X, WANG Y B, LIU Y R , et al. Preparation of HA/chitosan composite coatings on alkali treated titanium surfaces through Sol-Gel techniques. Materials Letters, 2007,61(18):3970-3973.
|
[34] |
PANG D, HE L, WEI L , et al. Preparation of a beta-tricalcium phosphate nanocoating and its protein adsorption behaviour by quartz crystal microbalance with dissipation technique. Colloids and Surfaces B: Biointerfaces, 2018,162:1-7.
|
[35] |
DONG X, WANG Q, WU T , et al. Understanding adsorption- desorption dynamics of BMP-2 on hydroxyapatite(001) surface. Biophysical journal, 2007,93(3):750-759.
|
[36] |
WALLWORK M L, KIRKHAM J, ZHANG J , et al. Binding of matrix proteins to developing enamel crystals: an atomic force microscopy study. Langmuir, 2001,17(8):2508-2513.
|
[37] |
ZHU X, FAN H, LI D , et al. Protein adsorption and zeta potentials of a biphasic calcium phosphate ceramic under various conditions. J. Biomed. Mater. Res. B App.l Biomater., 2007,82(1):65-73.
|
[38] |
ZHOU H, WU T, DONG X , et al. Adsorption mechanism of BMP-7 on hydroxyapatite(001) surfaces. Biochem. Biophys. Res. Commun., 2007,361(1):91-96.
|
[39] |
KANDORI K, FUDO A, ISHIKAWA T . Study on the particle texture dependence of protein adsorption by using synthetic micrometer- sized calcium hydroxyapatite particles. Colloids and Surfaces B: Biointerfaces, 2002,24(2):145-153.
|
[40] |
BOIX T, GOMEZ-MORALES J, TORRENT-BURGUES J , et al. Adsorption of recombinant human bone morphogenetic protein rhBMP-2m onto hydroxyapatite. Journal of Inorganic Biochemistry, 2005,99(5):1043-1050.
|
[41] |
FU Y K, ZHOU X, XIAO D Q , et al. Influence of micro-nano structure of haydroxyapatite particles on protein adsorption. Journal of Inorganic Materials, 2015,30(5):523-528.
|
[42] |
FU Y K, LI X Z, XIA X , et al. Effect of zeta potential of hydroxyapatite on protein adsorption. Progress in Modern Biomedicine, 2016,16(19):3610-3613.
|
[43] |
IMAMURA T, KAITO T . Homeostasis and disorder of musculoskeletal system.BMP and TGF signaling and locomotive tissues. Clinical Calcium, 2018,28(3):313.
|