[1] |
SIMONS R E, EllSWORTH M J, CHU R C . An assessment of module cooling enhancement with thermoelectric coolers.[J]. Heat Transf., 2005,127(1):76-84.
DOI
URL
|
[2] |
ZHANG H Y, MUI Y C, TARIN M . Analysis of thermoelectric cooler performance for high power electronic package. Appl. Therm. Eng., 2010,30(6/7):561-568.
DOI
URL
|
[3] |
AVRAM B C, IYENGAR M, KRAUS A D . Design of optimum plate-fin natural convective heat sinks.[J]. Electronic Packag., 2003,125(2):208-216.
DOI
URL
|
[4] |
BELL L E . Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008,321(5895):1457-1461.
DOI
URL
|
[5] |
HARMAN T C, TAYLOR P J, WALSH M P , et al. Quantum dot superlattice thermoelectric materials and devices. Science, 2002,297(5590):2229-2232.
DOI
URL
|
[6] |
CHOWDHURY I, PRASHER R, LOFGREE K , et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nat. nanotechnol., 2009,4(4):235-238.
DOI
|
[7] |
HAO F, QIU P F, TANG Y S , et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300 ℃. Energy & Environ Sci., 2016,9(10):3120-3127.
|
[8] |
DISALVO F J . Thermoelectric cooling and power generation. Science, 1999,285(5428):703-706.
DOI
URL
|
[9] |
YANG J, STABLER F R . Automotive applications of thermoelectric materials.[J]. Electron. Mater., 2009,38(7):1245-1251.
DOI
URL
|
[10] |
LU Z, LAYANI M, ZHAO X , et al. Fabrication of flexible thermoelectric thin film devices by inkjet printing. Small, 2014,10(17):3551-3554.
DOI
URL
|
[11] |
XU B, AGNE M T, FENG T L , et al. Nanocomposites from solution- synthesized PbTe-BiSbTe nanoheterostructure with unity figure of merit at low-medium temperatures (500-600 K). Adv.Mater., 2017, 29(10): 1605140-1-9.
|
[12] |
ZHU T J, HU L P, ZHAO X B , et al. New insight into intrinsic point defects in V2VI3 thermoelectric materials. Adv. Sci., 2016, 3(7): 1600004-1-16.
|
[13] |
MADAN D, CHEN A, WRIGHT P K , et al. Dispenser printed composite thermoelectric thick films for thermoelectric generator application. J. Appl. Phys., 2011, 109(3): 034904-1-6.
|
[14] |
MADAN D, WANG Z Q, CHEN A, et al. Dispenser printed circular thermoelectric devices using Bi and Bi0.5Sb1.5Te3. Appl. Phys.Lett ., 2014, 104(1): 013902-1-4.
|
[15] |
KIM S J, WE J H, CHO B J . A wearable thermoelectric generator fabricated on a glass fabric. Energy & Environ Sci., 2014,7(6):1959-1965.
|
[16] |
VARGHESE T, HOLLAR C, RICHARDSON J , et al. High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals. Sci. Rep., 2016, 6(1): 33135-1-6.
|
[17] |
WU H, LIU X, WEI P , et al. Fabrication and characterization of brush-printed p-type Bi0.5Sb1.5Te3 thick films for thermoelectric cooling devices.[J]. Electron. Mater., 2016,46(5):2950-2957.
|
[18] |
SHI J X, CHEN H L, JIA S H , et al. Rapid and low-cost fabrication of thermoelectric composite using low-pressure cold pressing and thermocuring methods. Mater. Lett., 2018,212:299-302.
DOI
URL
|
[19] |
CAO Z, KOUKHARENKO E, TUDOR M J , et al. Flexible screen printed thermoelectric generator with enhanced processes and materials. Sens. Actuators, A, 2016,238:196-206.
DOI
URL
|
[20] |
MADAN D, WANG Z Q, CHEN A , et al. Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generator. ACS Appl. Mater. Inter., 2012,4(11):6117-6124.
DOI
URL
|
[21] |
MADAN D, WANG Z Q, CHEN A , et al. High-performance dispenser printed MA p-type Bi0.5Sb1.5Te3 flexible thermoelectric generators for powering wireless sensor networks. ACS Appl. Mater. Inter., 2013,5(22):11872-11876.
DOI
URL
|
[22] |
HOU W K, NIE X L, ZHAO W Y , et al. Fabrication and excellent performance of Bi0.5Sb1.5Te3/epoxy flexible thermoelectric cooling devices. Nano Energy, 2018,50:766-776.
DOI
URL
|
[23] |
GUO X, JIA X, QIN J , et al. Fast preparation and high thermoelectric performance of the stable Bi0.5Sb1.5Te3 bulk materials for different synthesis pressures. Chem. Phys. Lett., 2014,610:204-208.
|
[24] |
SUH D, LEE S, MUN H , et al. Enhanced thermoelectric performance of Bi0.5Sb1.5Te3-expanded grapheme composites by simultaneous modulation of electronic and thermal carrier transport. Nano Energy, 2015,13:67-76.
DOI
URL
|
[25] |
MADAN D, WANG Z Q, WRIGHT P K , et al. Printed flexible thermoelectric generators for use on low levels of waste heat. Appl.Energy, 2015,156:587-592.
DOI
URL
|
[26] |
CHEN J C, YAN Z J, WU L Q . Nonequilibrium thermodynamic analysis of a thermoelectric device. Energy, 1997,22(10):979-985.
DOI
URL
|
[27] |
CHEN L G, WU C, SUN F R . Heat transfer effect on the specific cooling load of refrigerators. Appl. Therm. Eng., 1996,16(12):989-997.
DOI
URL
|