[1] |
BORRERO-LÓPEZ O, ORTIZ AL, GUIBERTEAU F , et al. Effect of microstructure on sliding-wear properties of liquid-phase-sintered α-SiC.[J]. Am. Ceram. Soc., 2005,88(8):2159-2163.
DOI
URL
|
[2] |
BORRERO-LÓPEZ O, ORTIZ AL, GUIBERTEAU F , et al. Sliding- wear resistant liquid-phase sintered SiC processed using α-SiC starting powders.[J]. Am. Ceram. Soc., 2007,90(2):541-545.
DOI
URL
|
[3] |
BORRERO-LÓPEZ O, ORTIZ AL, GUIBERTEAU F , et al. Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview.[J]. Eur. Ceram. Soc., 2007,27(11):3351-3357.
DOI
URL
|
[4] |
BORRERO-LÓPEZ O, ORTIZ AL, GUIBERTEAU F , et al. Effect of the nature of the intergranular phase on sliding-wear resistance of liquid-phase-sintered α -SiC. Scr. Mater., 2007,57(6):505-508.
DOI
URL
|
[5] |
ALLIEGRO R, COFFIN L, TINKLEPAUGH J . Pressure-sintered silicon carbide.[J]. Am. Ceram. Soc., 1956,39(11):386-389.
DOI
URL
|
[6] |
OMORI M, TAKEI H . Pressureless sintering of SiC.[J]. Am. Ceram. Soc., 1982,65(6):c92-c92.
DOI
URL
|
[7] |
SANG K Z, JIN Z H . Unlubricated friction of reaction-sintered silicon carbide and its composite with nickel. Wear, 2000,246(1/2):34-39.
DOI
URL
|
[8] |
SASAKI S . The effect of the surrounding atmosphere on the friction and wear of alumina, zirconia, silicon carbide and silicon nitride. Wear, 1989,134(1):185-200.
DOI
URL
|
[9] |
BORRERO-LÓPEZA O, ORTIZA AL, GUIBERTEAUA F , et al. Effect of liquid-phase content on the contact-mechanical properties of liquid-phase-sintered α-SiC.[J]. Eur. Ceram. Soc., 2007,27(6):2521-2527.
DOI
URL
|
[10] |
BORRERO-LÓPEZA O, ORTIZA AL, GUIBERTEAUA F . Improved sliding-wear resistance in situ-toughened silicon carbide.[J]. Am. Ceram. Soc., 2005,88(12):3531-3534.
DOI
URL
|
[11] |
CIUDAD E , BORRERO-LÓPEZ O, RODRÍGUEZ-ROJAS F, et al. Effect of intergranular phase chemistry on the sliding-wear resistance of pressureless liquid-phase-sintered α-SiC.[J]. Euro. Ceram. Soc., 2012,32(2):511-516.
DOI
URL
|
[12] |
CHO S J, UM C D, KIM S S . Wear and wear transition in silicon carbide ceramics during sliding.[J]. Am. Ceram. Soc., 1996,79(5):1247-1251.
DOI
URL
|
[13] |
LLORENTE J, ROMAN-MANSO B, MIRANZO P , et al. Tribological performance under dry sliding conditions of graphene/silicon carbide composites.[J]. Euro. Ceram. Soc., 2016,36(3):429-435.
DOI
URL
|
[14] |
LAFON-PLACETTE S, DELBE K, DENAPE J , et al. Tribological characterization of silicon carbide and carbon materials.[J]. Euro. Ceram. Soc., 2015,35(4):1147-1159.
DOI
URL
|
[15] |
NIIHARA K, MORENA R, HASSELMAN D . Evaluation of KIC of brittle solids by the indentation method with low crack-to-indent ratios.[J]. Mater. Sci. Lett., 1982,1(1):13-16.
DOI
URL
|
[16] |
CHO S J, HOCKEY B J, LAWN B R , et al. Grain-size and R-curve effects in the abrasive wear of alumina.[J]. Am. Ceram. Soc., 1989,72(7):1249-1252.
DOI
URL
|
[17] |
CHO S J, UM C D, KIM S S . Wear and wear transition mechanism in silicon carbide during sliding.[J]. Am. Ceram. Soc., 1995,78(4):1076-1078.
DOI
URL
|
[18] |
DEWITH G, PARREN J . Translucent Y3Al5O12 ceramics-mechanical- properties. Solid State Ionics, 1985,16(1-4):87-93.
DOI
URL
|
[19] |
SANG K Z, LIU L, JIN Z H . Improvements on dry friction and wear properties for reaction-sintered silicon carbide by the matching size of SiC particles. Mater and Design, 2007,28(2):735-738.
DOI
URL
|