无机材料学报 ›› 2019, Vol. 34 ›› Issue (6): 625-632.DOI: 10.15541/jim20180426
所属专题: 乘风破浪的新能源材料; 优秀作者论文集锦; 优秀作者作品欣赏:能源材料
收稿日期:
2018-09-13
修回日期:
2018-12-11
出版日期:
2019-06-20
网络出版日期:
2019-05-23
作者简介:
许伟佳(1990-), 男, 硕士研究生. E-mail: 946556446@qq.com
基金资助:
Wei-Jia XU,Da-Ping QIU,Shi-Qiang LIU,Min LI(),Ru YANG()
Received:
2018-09-13
Revised:
2018-12-11
Published:
2019-06-20
Online:
2019-05-23
Supported by:
摘要:
本研究以空腔细胞组成的栓皮栎为原料, KOH为活化剂制备了具有多孔结构的栓皮栎软木基多孔活性炭。以此方法制得的活性炭呈薄片状外形, 最大比表面积达到2312 m 2/g, 具有特殊的微孔-介孔结构。在呈碱性的KOH三电极体系中, 0.1 A/g电流密度时比电容达296 F/g; 两电极体系中, 5 A/g时的比电容达到201 F/g, 循环5000次后电容保持率达99.5%。在呈中性的Na2SO4两电极体系中, 电流密度0.5 A/g (174 F/g)至50 A/g (140 F/g)时电容保持率达80.5%, 倍率性能良好, 能量密度高达19.62 Wh/kg。
中图分类号:
许伟佳, 邱大平, 刘诗强, 李敏, 杨儒. 用于高性能超级电容器电极的栓皮栎基多孔活性炭的制备[J]. 无机材料学报, 2019, 34(6): 625-632.
Wei-Jia XU, Da-Ping QIU, Shi-Qiang LIU, Min LI, Ru YANG. Preparation of Cork-derived Porous Activated Carbon for High Performance Supercapacitors[J]. Journal of Inorganic Materials, 2019, 34(6): 625-632.
图1 软木基多孔活性炭片制备流程及超级电容器应用
Fig. 1 Schematic illustration of the preparation process for cork-derived porous activated carbon sheets and application of supercapacitor
Samples | SBET/ (m2?g-1) | aDave/ nm | Vt/ (cm3?g-1) | DFT Method | |||||
---|---|---|---|---|---|---|---|---|---|
S<1 nm/ (m2?g-1) | S1-2 nm/ (m2?g-1) | S2-4 nm/ (m2?g-1) | V<1 nm/ (cm3?g-1) | V1-2 nm/ (cm3?g-1) | V2-4 nm/ (cm3?g-1) | ||||
COAC-3.5 | 1044 | 2.19 | 0.57 | 1097 | 115 | 29 | 0.34 | 0.08 | 0.04 |
COAC-4.0 | 2169 | 2.20 | 1.19 | 975 | 554 | 221 | 0.33 | 0.37 | 0.26 |
COAC-4.5 | 2312 | 2.22 | 1.28 | 1191 | 485 | 247 | 0.40 | 0.35 | 0.29 |
COAC-5.0 | 1929 | 2.18 | 1.05 | 1087 | 423 | 172 | 0.36 | 0.29 | 0.21 |
表S1 样品COAC-n的孔结构参数
Table S1 Porosity parameters of the COAC-n samples
Samples | SBET/ (m2?g-1) | aDave/ nm | Vt/ (cm3?g-1) | DFT Method | |||||
---|---|---|---|---|---|---|---|---|---|
S<1 nm/ (m2?g-1) | S1-2 nm/ (m2?g-1) | S2-4 nm/ (m2?g-1) | V<1 nm/ (cm3?g-1) | V1-2 nm/ (cm3?g-1) | V2-4 nm/ (cm3?g-1) | ||||
COAC-3.5 | 1044 | 2.19 | 0.57 | 1097 | 115 | 29 | 0.34 | 0.08 | 0.04 |
COAC-4.0 | 2169 | 2.20 | 1.19 | 975 | 554 | 221 | 0.33 | 0.37 | 0.26 |
COAC-4.5 | 2312 | 2.22 | 1.28 | 1191 | 485 | 247 | 0.40 | 0.35 | 0.29 |
COAC-5.0 | 1929 | 2.18 | 1.05 | 1087 | 423 | 172 | 0.36 | 0.29 | 0.21 |
Samples | N/at% | C/at% | O/at% | O-I/at% | O-II/at% | O-III/at% |
---|---|---|---|---|---|---|
COAC-3.5 | — | 86.65 | 13.35 | 5.85 | 4.58 | 2.92 |
COAC-4.0 | 1.42 | 81.51 | 17.07 | 7.87 | 5.78 | 3.42 |
COAC-4.5 | 1.34 | 86.12 | 12.54 | 4.04 | 3.77 | 4.73 |
COAC-5.0 | 1.37 | 82.79 | 15.84 | 7.78 | 5.24 | 2.82 |
表S2 XPS分析样品COAC-n的C, O和N元素含量
Table S2 C, O and N contents of COAC-n samples from XPS analysis
Samples | N/at% | C/at% | O/at% | O-I/at% | O-II/at% | O-III/at% |
---|---|---|---|---|---|---|
COAC-3.5 | — | 86.65 | 13.35 | 5.85 | 4.58 | 2.92 |
COAC-4.0 | 1.42 | 81.51 | 17.07 | 7.87 | 5.78 | 3.42 |
COAC-4.5 | 1.34 | 86.12 | 12.54 | 4.04 | 3.77 | 4.73 |
COAC-5.0 | 1.37 | 82.79 | 15.84 | 7.78 | 5.24 | 2.82 |
图7 样品COAC-n在6 mol/L KOH三电极体系的电化学性能: 在扫描速率(a) 1和200 mV/s(b)下的循环伏安曲线; (c)在电流密度0.1 A/g下的恒电流充放电曲线; (d) 比电容与电流密度函数关系曲线; (e) Nyquist图谱
Fig. 7 Electrochemical performance characteristics of COAC-n measured in a three-electrode system in the 6 mol/L KOH electrolyte: CV curves at (a) 1 mV/s and (b) 200 mV/s; (c) Galvanostatic charge/discharge curves at a current density of 0.1 A/g; (d) Specific capacitances at different current densities; (e) Nyquist plots in the frequency range from 10 kHz to 10 mHz with inset showing magnified figure of arc part
图S1 样品COAC-4.5在6 mol/L KOH两电极体系的电化学性能: (a)在扫描速率1~50 mV/s下的循环伏安曲线; (b)在扫描速率100~500 mV/s下的循环伏安曲线; (c)在电流密度10~50 A/g下的恒电流充放电曲线; (d)比电容与电流密度函数关系曲线; (e)能量密度与功率密度关系曲线; (f) 在电流密度5 A/g下循环5000次的长循环曲线(插图为第1次与第5000次循环恒电流充放电曲线)
Fig. S1 Electrochemical performance of COAC-4.5 measured in two electrode system with 6 mol/L KOH electrolyte:(a), (b) CV curves at different scan rates; (c) Galvanostatic charge-discharge curves at different current densities; (d) Specific capacitances for a single electrode at different current densities; (e) Ragone plot of the symmetrical system; (f) Cycling stability at a current density of 5 A/g and inset is the charge-discharge curves of first cycle and 5000th cycle
图S2 样品COAC-4.5在1 mol/L Na2SO4两电极体系的电化学性能: (a)在不同电势窗口、扫描速率50 mV/s下的循环伏安曲线; (b)在电流密度5-50 A/g下的恒电流充放电曲线; (c)比电容与电流密度函数关系曲线; (d)能量密度与功率密度关系曲线
Fig. S2 Electrochemical performance of COAC-4.5 measured in two electrode system with 1 mol/L Na2SO4 electrolyte: (a) CV curves of the cell operated in different voltage windows at a scan rate of 50 mV/s; (b) Galvanostatic charge/discharge curves of the cell at various current densities; (c) Specific capacitances for a single electrode at different current densities; (d) Ragone plot of COAC-4.5 and other carbon-based symmetrical supercapacitors
[1] |
DE WIT M, FAAIJ A . European biomass resource potential and costs. Biomass and Bioenergy, 2010,34(2):188-202.
DOI URL |
HAO Y X, QIAN M, XU J J , et al. Synthesis, microstructure and superconductivity of cotton-based porous carbon materials. Journal of Inorganic Materials, 2018,33(1):93-99. | |
[2] | SEVILLA M, MOKAYA R . Energy storage applications of activated carbons: supercapacitors and hydrogen storage. Energy & Environmental Science, 2014,7(4):1250-1280. |
[3] |
WICKRAMARATNE N P, XU J, WANG M , et al. Nitrogen enriched porous carbon spheres: attractive materials for supercapacitor electrodes and CO2 adsorption. Chemistry of Materials, 2014,26(9):2820-2828.
DOI URL |
[4] |
ZHAI Y, DOU Y, ZHAO D , et al. Carbon materials for chemical capacitive energy storage. Advanced Materials, 2011,23(42):4828-4850.
DOI URL |
[5] |
ZHANG L L, ZHAO X S . Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 2009,38(9):2520-2531.
DOI URL |
[6] |
TIAN X, MA H, LI Z , et al. Flute type micropores activated carbon from cotton stalk for high performance supercapacitors. Journal of Power Sources, 2017,359:88-96.
DOI URL |
[7] |
YU K, ZHU H, QI H , et al. High surface area carbon materials derived from corn stalk core as electrode for supercapacitor. Diamond and Related Materials, 2018,88:18-22.
DOI URL |
[8] |
YANG C S, JANG Y S, JEONG H K . Bamboo-based activated carbon for supercapacitor applications. Curr. Appl. Phys., 2014,14(12):1616-1620.
DOI URL |
[9] | CHEN C, ZHANG Y, LI Y , et al. All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy & Environmental Science, 2017,10(2):538-545. |
[10] | YANG R, WANG Y, LI M , et al. A new carbon/ferrous sulfide/ iron composite prepared by an in situ carbonization reduction method from hemp (Cannabis sativa L.) stems and its Cr (VI) removal ability. ACS Sustainable Chemistry & Engineering, 2014,2(5):1270-1279. |
[11] |
YU Z F, WANG X Z, HOU Y N , et al. Preparation of nitrogen- doped porous carbon by molten salt method and its catalytic desulfurization performance. Journal of Inorganic Materials, 2017,32(7):770-776.
DOI URL |
[12] | ATANES E NIETO-MÁRQUEZ A, CAMBRA A, , et al. Adsorption of SO2 onto waste cork powder-derived activated carbons. Chemical Engineering Journal, 2012,211(22):60-67. |
[13] |
JAIN A, BALASUBRAMANIAN R, SRINIVASAN M P . Production of high surface area mesoporous activated carbons from waste biomass using hydrogen peroxide-mediated hydrothermal treatment for adsorption applications. Chemical Engineering Journal, 2015,273:622-629.
DOI URL |
[14] |
KIM M J, JUNG M J, KIM M I , et al. Adsorption characteristics of toluene gas using fluorinated phenol-based activated carbons. Applied Chemistry for Engineering, 2015,26(5):587-592.
DOI URL |
[15] |
ROSAS J M, RUIZ-ROSAS R, RODRÍGUEZ-MIRASOL J , et al. Kinetic study of SO2, removal over lignin-based activated carbon. Chemical Engineering Journal, 2017,307:707-721.
DOI URL |
[16] |
LULAI E C, CORSINI D L . Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing. Physiological and Molecular Plant Pathology, 1998,53(4):209-222.
DOI URL |
[17] |
PILAO R, RAMALHO E, PINHO C . Overall characterization of cork dust explosion. Journal of Hazardous Materials, 2006,133(1):183-195.
DOI URL |
[18] |
YANG H P, YAN R, CHEN H P , et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 2007,86(12):1781-1788.
DOI URL |
[19] |
CORDEIRO N, BELGACEM N M, GANDINI A , et al. Cork suberin as a new source of chemicals: 2. Crystallinity, thermal and rheological properties. Bioresource Technology, 1998,63(2):153-158.
DOI URL |
[20] |
JIANG G, NOWAKOWSKI D J, BRIDGWATER A V . A systematic study of the kinetics of lignin pyrolysis. Thermochimica Acta, 2010,498(1):61-66.
DOI URL |
[21] |
JOHN M J, THOMAS S . Biofibres and biocomposites. Carbohydrate Polymers, 2008,71(3):343-364.
DOI URL |
[22] |
RAYMUNDO-PIÑERO E, LEROUX F, BÉGUIN F . A high- performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Advanced Materials, 2006,18(14):1877-1882.
DOI URL |
[23] | LI Y, ZHAO Y, CHENG H , et al. Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. Journal of the American Chemical Society, 2011,134(1):15-18. |
[24] |
BINIAK S, SZYMAŃSKI G, SIEDLEWSKI J , et al. The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon, 1997,35(12):1799-1810.
DOI URL |
[25] | ZHAO Y F, RAN W, HE J , et al. Oxygen-rich hierarchical porous carbon derived from artemia cyst shells with superior electrochemical performance. ACS Applied Materials & Interfaces, 2015,7(2):1132-1139. |
[26] |
ZHU H, WANG X L, YANG F , et al. Promising carbons for supercapacitors derived from fungi. Advanced Materials, 2011,23(24):2745-2748.
DOI URL |
[27] | JIANG L, SHENG L, LONG C , et al. Functional pillared graphene frameworks for ultrahigh volumetric performance supercapacitors. Advanced Energy Materials, 2015, 5(15): 1500771-1-9. |
[28] |
XU B, HOU S, CAO G , et al. Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. Journal of Materials Chemistry, 2012,22(36):19088-19093.
DOI URL |
[29] |
ZHONG C, DENG Y D, HU W B , et al. A review of electrolyte materials and compositions for electrochemical supercapacitors. Chemical Society Reviews, 2015,44(21):7484-7539.
DOI URL |
[30] | YU A, CHABOT V, ZHANG J. Electrochemical supercapacitors for energy storage and delivery:fundamentals and applications. CRC Press, 2013. |
[31] |
WANG Q, YAN J, WANG Y B , et al. Three-dimensional flower-like and hierarchical porous carbon materials as high-rate performance electrodes for supercapacitors. Carbon, 2014,67(2):119-127.
DOI URL |
[32] |
SUN G L, LI B, RAN J B , et al. Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide- chitosan hydrogels for high performance supercapacitors. Electrochimica Acta, 2015,171:13-22.
DOI URL |
[33] |
LONG C L, CHEN X, JIANG L L , et al. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy, 2015,12:141-151.
DOI URL |
[34] | YAN J, WANG Q, WEI T, FAN Z J . Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater., 2014, 4(4): 1300816-1-43. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 周帆, 毕辉, 黄富强. 用稻壳制备亚甲基蓝高吸附容量的超高比表面积活性炭[J]. 无机材料学报, 2021, 36(8): 893-903. |
[3] | 李创, 杨庆峰, 陆盛森, 刘阳桥. La/FeOOH@PAC对反渗透浓缩液中有机膦酸盐阻垢剂HEDP的吸附性能研究[J]. 无机材料学报, 2021, 36(8): 841-846. |
[4] | 孙鹏, 张绍宁, 毕辉, 董武杰, 黄富强. 基于结构调节碳材料的掺氮种类和含量及其超级电容器储能应用[J]. 无机材料学报, 2021, 36(7): 766-772. |
[5] | 刘芳芳, 传秀云, 杨扬, 李爱军. 氮/硫共掺杂对纤水镁石模板碳纳米管电化学性能的影响[J]. 无机材料学报, 2021, 36(7): 711-717. |
[6] | 李泽晖,谭美娟,郑元昊,骆雨阳,经求是,蒋靖坤,李明杰. 导电金属有机骨架材料在超级电容器中的应用[J]. 无机材料学报, 2020, 35(7): 769-780. |
[7] | 陈钧,马培华,张诚,劳伦·鲁尔曼,吕耀康. 新型多功能无机/有机复合薄膜的制备及电化学性能研究[J]. 无机材料学报, 2020, 35(2): 217-223. |
[8] | 费明婕, 张任平, 朱归胜, 俞兆喆, 颜东亮. 磷酸根掺杂MnFe2O4及其赝电容特性[J]. 无机材料学报, 2020, 35(10): 1137-1141. |
[9] | 丁卓峰, 杨永强, 李在均. 组氨酸功能化碳点/石墨烯气凝胶的制备及超级电容器性能[J]. 无机材料学报, 2020, 35(10): 1130-1136. |
[10] | 李腾飞, 黄璐君, 闫旭东, 刘庆雷, 顾佳俊. 碳化钛/椴木多孔碳复合材料用于超级电容器性能的研究[J]. 无机材料学报, 2020, 35(1): 126-130. |
[11] | 张天宇, 崔聪, 程仁飞, 胡敏敏, 王晓辉. 同步氨化/碳化法制备MXene/C平面多孔复合电极[J]. 无机材料学报, 2020, 35(1): 112-118. |
[12] | 马亚楠, 刘宇飞, 余晨旭, 张传坤, 罗时军, 高义华. 不同横向尺寸单层Ti3C2Tx纳米片的制备及其电化学性能研究[J]. 无机材料学报, 2020, 35(1): 93-98. |
[13] | 刘伟, 郑凯, 王东红, 雷忆三, 范怀林. Co3O4纳米线阵列@活性炭纤维复合材料的水热合成及电化学应用[J]. 无机材料学报, 2019, 34(5): 487-492. |
[14] | 王远, 林杰, 常郑, 林天全, 钱猛, 黄富强. 基于三维石墨烯衬底的纳米片状水合氧化钌:电化学沉积制备以及柔性超级电容器储能应用[J]. 无机材料学报, 2019, 34(4): 455-460. |
[15] | 赵世怀,杨紫博,赵晓明,徐文文,温昕,张庆印. NiCo2S4@ACF异质电极材料的绿色制备及其超级电容性能研究[J]. 无机材料学报, 2019, 34(2): 130-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||