无机材料学报 ›› 2019, Vol. 34 ›› Issue (6): 590-598.DOI: 10.15541/jim20180406
收稿日期:
2018-09-06
修回日期:
2018-11-13
出版日期:
2019-06-20
网络出版日期:
2019-05-23
作者简介:
吕喜庆(1994-), 男, 硕士研究生. E-mail:xiqinglv@163.com
基金资助:
Xi-Qing LÜ,Huan-Yu ZHANG,Rui LI,Mei ZHANG,Min GUO()
Received:
2018-09-06
Revised:
2018-11-13
Published:
2019-06-20
Online:
2019-05-23
Supported by:
摘要:
采用水热法与旋涂法, 成功制备出基于钛网基底的TiO2纳米线阵列/Yb-Er-F掺杂TiO2上转换发光纳米粒子(TNWAs/YEF-TiO2-UCNPs)复合结构光阳极, 并将其组装成柔性染料敏化太阳能电池(DSSC)。探讨了Yb-Er-F掺杂TiO2上转换发光纳米粒子的光学性能对复合结构DSSC光电转换性能的影响, 在此基础上系统研究了不同NbCl5浓度包覆对复合结构形貌和DSSCs性能的影响。结果表明:Yb-Er-F掺杂TiO2上转换发光纳米粒子的引入可以增大光阳极的入射光利用范围, 但同时也会增加其内部的电子复合。通过Nb2O5纳米粒子层的包覆可以在半导体/电解液界面形成能量势垒, 增加复合阻抗Rrec, 抑制电子复合; 提高电子收集效率ηec和光生电子寿命τe, 进一步增大短路电流和开路电位, 最终提高电池的光电转换效率。采用20 mmol/L的NbCl5乙醇溶液旋涂制备的Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构柔性DSSC获得了最佳的光电转换效率(6.89%), 比未经包覆的TNWAs/YEF-TiO2-UCNPs复合结构提升了24.3%。
中图分类号:
吕喜庆, 张环宇, 李瑞, 张梅, 郭敏. Nb2O5包覆对TiO2纳米阵列/上转换发光复合结构柔性染料敏化太阳能电池性能的影响[J]. 无机材料学报, 2019, 34(6): 590-598.
Xi-Qing LÜ, Huan-Yu ZHANG, Rui LI, Mei ZHANG, Min GUO. Nb2O5 Coating on the Performance of Flexible Dye Sensitized Solar Cell Based on TiO2 Nanoarrays/Upconversion Luminescence Composite Structure[J]. Journal of Inorganic Materials, 2019, 34(6): 590-598.
图1 钛网基底Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构柔性DSSC的制备流程示意图
Fig. 1 Flow chart of the preparation process of flexible DSSC based on Ti mesh supported Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure
图2 YEF-TiO2-UCNPs的(a) XRD图谱和(b)SEM照片; (c) YEF-TiO2-UCNPs和P25的紫外-可见-近红外吸收光谱; (d) YEF-TiO2-UCNPs和YE-TiO2-UCNPs的上转换荧光光谱, 激发波长980 nm
Fig. 2 (a) XRD pattern and (b) SEM image of YEF-TiO2-UCNPs; (c) UV-Vis-NIR absorption spectra of YEF-TiO2-UCNPs and P25; (d) Upconversion fluorescence spectra of YEF-TiO2-UCNPs and YE-TiO2-UCNPs, under 980 nm excitation
图4 钛网基底TNWAs/YEF-TiO2-UCNPs复合结构的(a)低倍和(b)高倍SEM照片; (c) TNWAs/P25和TNWAs/YEF- TiO2-UCNPs复合结构DSSCs的J-V测试曲线和光伏性能参数
Fig. 4 (a) Low and (b) high magnification SEM images of Ti mesh supported TNWAs/YEF-TiO2-UCNPs composite structure; (c) J-V curves and photovoltaic properties of DSSCs based on Ti mesh supported TNWAs/P25 and TNWAs/YEF-TiO2- UCNPs composite structures
图5 不同NbCl5浓度Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构光阳极的XRD图谱
Fig. 5 XRD patterns of Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure photoanodes prepared with different NbCl5 concentrations
图6 不同NbCl5浓度Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构光阳极的SEM照片 (a) 10 mmol/L; (b) 20 mmol/L; (c) 40 mmol/L; (d) 60 mmol/L
Fig. 6 (a) SEM images of Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure prepared with different NbCl5 concentrations
图7 不同NbCl5浓度的钛网基底Nb2O5@TNWAs/YEF- TiO2-UCNPs复合结构DSSCs的J-V测试曲线
Fig. 7 J-V curves of DSSCs based on Ti mesh supported Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure prepared with different NbCl5 concentrations
NbCl5 concentration /(mmol?L-1) | Jsc/ (mA·cm-2) | Voc/V | FF | PCE/% |
---|---|---|---|---|
0 | 12.81 | 0.74 | 0.58 | 5.54 |
10 | 13.20 | 0.76 | 0.63 | 6.29 |
20 | 13.72 | 0.78 | 0.65 | 6.89 |
40 | 8.80 | 0.71 | 0.54 | 3.40 |
60 | 5.32 | 0.68 | 0.47 | 1.69 |
表1 不同NbCl5浓度的钛网基底Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构DSSCs的光伏性能参数
Table 1 Photoelectric properties of DSSCs based on Ti mesh supported Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure prepared with different NbCl5 concentrations
NbCl5 concentration /(mmol?L-1) | Jsc/ (mA·cm-2) | Voc/V | FF | PCE/% |
---|---|---|---|---|
0 | 12.81 | 0.74 | 0.58 | 5.54 |
10 | 13.20 | 0.76 | 0.63 | 6.29 |
20 | 13.72 | 0.78 | 0.65 | 6.89 |
40 | 8.80 | 0.71 | 0.54 | 3.40 |
60 | 5.32 | 0.68 | 0.47 | 1.69 |
图8 不同NbCl5浓度Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构光阳极脱附染料的吸收光谱图
Fig. 8 UV-Vis absorption spectra of dyes desorbed from corresponding sensitized Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure photoanodes prepared with different NbCl5 concentrations
图9 钛网基底Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构DSSCs中不同物质的能级示意图
Fig. 9 Schematic diagram of the energy levels of materials in the DSSCs based on Ti mesh supported Nb2O5@TNWAs/YEF- TiO2-UCNPs composite structure
图10 不同NbCl5浓度的钛网基底Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构DSSCs的电化学阻抗谱:(a)暗态和(b)光照下的Nyquist 曲线; (c)暗态下的Bode曲线; (d)模拟等效电路图
Fig. 10 EIS plots of DSSCs based on Ti mesh supported Nb2O5@TNWAsYEF-TiO2-UCNPs composite structure prepared with different NbCl5 concentrations: Nyquist plots of DSSCs under (a) dark and (b) illumination; (c) Bode plots of DSSCs under dark; (d) Equivalent circuit of DSSCs
NbCl5 concentration /(mmol?L-1) | Rtr/Ω | Rrec/Ω | ηec | fp/Hz | τe/ms |
---|---|---|---|---|---|
0 | 36.60 | 101.5 | 0.73 | 3.78 | 42.0 |
10 | 24.24 | 130.2 | 0.84 | 3.09 | 51.3 |
20 | 18.25 | 186.9 | 0.91 | 3.06 | 51.8 |
40 | 31.95 | 89.12 | 0.73 | 5.51 | 28.9 |
60 | 34.04 | 75.56 | 0.69 | 6.64 | 23.9 |
表2 通过等效电路拟合后不同NbCl5浓度的钛网基底Nb2O5@TNWAs/YEF-TiO2-UCNPs复合结构DSSCs的电化学阻抗数据
Table 2 EIS data of DSSCs based on Ti mesh supported Nb2O5@TNWAs/YEF-TiO2-UCNPs composite structure prepared with different NbCl5 concentrations after fitting by equivalent circuit
NbCl5 concentration /(mmol?L-1) | Rtr/Ω | Rrec/Ω | ηec | fp/Hz | τe/ms |
---|---|---|---|---|---|
0 | 36.60 | 101.5 | 0.73 | 3.78 | 42.0 |
10 | 24.24 | 130.2 | 0.84 | 3.09 | 51.3 |
20 | 18.25 | 186.9 | 0.91 | 3.06 | 51.8 |
40 | 31.95 | 89.12 | 0.73 | 5.51 | 28.9 |
60 | 34.04 | 75.56 | 0.69 | 6.64 | 23.9 |
[1] |
XIAO Y, WU J, YUE G , et al. Fabrication of high performance Pt/Ti counter electrodes on Ti mesh for flexible large-area dye- sensitized solar cells. Electrochim. Acta., 2011,58(1):621-627.
DOI URL |
[2] |
XIAO Y, WU J, YUE G , et al. The surface treatment of Ti meshes for use in large-area flexible dye-sensitized solar cells.[J]. Power Sources, 2012,208(2):197-202.
DOI URL |
[3] |
WANG Y, YANG H, LIU Y . The use of Ti meshes with self- organized TiO2 nanotubes as photoanodes of all-Ti dye-sensitized solar cells. Prog. Photovolt:Res Appl., 2010,18(4):285-290.
DOI URL |
[4] |
HUANG X, HAN S, HUANG W , et al. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem. Soc. Rev., 2013,42(1):173-201.
DOI URL PMID |
[5] |
WU J, WANG J, LIN J , et al. Enhancement of the photovoltaic performance of dye-sensitized solar cells by doping Y0.78Yb0.20Er0.02F3 in the photoanode. Adv. Energy Mater., 2012,2:78-81.
DOI URL |
[6] |
HUANG S H . Effects of Eu 3+ and Er 3+ doping on photoelectrical performance of dye-sensitized solar cells. [J]. Am. Ceram. Soc., 2013,96(10):3108-3113.
DOI URL |
[7] |
HAASE M, SCHAFER H . Upconverting nanoparticles. Angew. Chem. Int. Ed., 2011,50(26):5808-5829.
DOI URL |
[8] | LIU Y, YU L, WEI Z G , et al. Theoretical and experimental study on the effect of rare earth metal doping on the photocatalytic activity of anatase TiO2. Chem. J. Chinese U., 2013,34(2):434-440. |
[9] |
LIN S, DONG X, JIA R , et al. Controllable synthesis and luminescence property of LnPO4,( Ln=La, Gd, Y) nanocrystals. J. Mate. Sci. Mater. El., 2010,21(1):38-44.
DOI URL |
[10] |
HEWES R A, SARVER J F . Infrared excitation processes for the visible luminescence of Er 3+, Ho 3+ and Tm 3+ in Yb 3+-sensitized rare-earth trifluorides . Phys. Rev., 1969,182(2):427-436.
DOI URL |
[11] |
SUYVER J F, GRIMM J, KRÄMER K W , et al. Highly efficient near-infrared to visible up-conversion process in NaYF4:Er 3+, Yb 3+. [J]. Lumin., 2005,114(1):53-59.
DOI URL |
[12] |
WANG F, LIU X . Recent advances in the chemistry of lanthanide- doped upconversion nanocrystals. Chem. Soc. Rev., 2009,38(4):976-989.
DOI URL |
[13] |
KIM C W, SHIN W J, CHOI M J , et al. Wavelength conversion effect-assisted dye sensitized solar cells for enhanced solar light harvesting. J. Mater. Chem.A, 2016,4(30):11908-11915.
DOI URL |
[14] |
LIU W, ZHANG H, WANG H , et al. Titanium mesh supported TiO2 nanowire arrays/upconversion luminescence Er 3+-Yb 3+ codoped TiO2 nanoparticles novel composites for flexible dye-sensitized solar cells . Appl. Surf. Sci., 2017,422:304-315.
DOI URL |
[15] |
SHAN G B, DEMOPOULOUS G P . Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater., 2010,22(39):4373-4377.
DOI URL PMID |
[16] |
XU X, KUN C, HUANG D , et al. Disulfide/thiolate based redox shuttle for dye-sensitized solar cells: an impedance spectroscopy study. J. Phys. Chem.C, 2012,116(48):25233-2524.
DOI URL |
[17] |
LIANG L, LIU Y, BU C , et al. Highly uniform bifunctional core/double-shell-structured β-NaYF4: Er 3+, Yb 3+@SiO2@TiO2 hexagonal sub-microprisms for high-performance dye sensitized solar cells . Adv. Mater., 2013,25:2174-2180.
DOI URL |
[18] |
CHOI S C, LEE H S, SANG J O , et al. Light scattering TiO2 particles surface-modified by Al2O3 coating in a dye-sensitized solar cell. Physica Scripta., 2012,85(2):25801-25805.
DOI URL |
[19] |
LEE S, KIM J Y, HONG K S , et al. Enhancement of the photoelectric performance of dye-sensitized solar cells by using a CaCO3-coated TiO2 nanoparticle film as an electrode. Sol. Energ. Mat. Sol. C., 2006,90(15):2405-2412.
DOI URL |
[20] |
BANDARA J, WEERASINGHE H C . Enhancement of photovoltage of dye-sensitized solid-state solar cells by introducing high- band-gap oxide layers. Sol.Energ. Mater.Sol.C., 2005,88(4):341-350.
DOI URL |
[21] |
LENZMANN F, KRUEGER J, BURNSIDE S , et al. Surface photovoltage spectroscopy of dye-sensitized solar cells with TiO2, Nb2O5, and SrTiO3 nanocrystalline photoanodes: indication for electron injection from higher excited dye states. J.Phys.Chem.B, 2001,105(27):6347-6352.
DOI URL |
[22] |
GUO J, SHE C, LIAN T . Effect of insulating oxide over layers on electron injection dynamics in dye-sensitized nanocrystalline thin films. J. Phys. Chem.C, 2007,111(25):8979-8987.
DOI URL |
[23] |
YIN L W, TANG R . Enhanced photovoltaic performance of dye- sensitized solar cells based on Sr-doped TiO2/SrTiO3 nanorod array heterostructures. J. Mater. Chem.A, 2015,3(33):17417-17425.
DOI URL |
[24] |
WU S, GAO X, QIN M , et al. SrTiO3 modified TiO2 electrodes and improved dye-sensitized TiO2 solar cells. Appl. Phys. Lett., 2011, 99: 042106-1-3.
DOI URL |
[25] |
BAREA E, XU X Q, GONZALEZ-PEDRO V , et al. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorods based dye sensitized solar cells. Energ. Environ. Sci., 2011,4(9):3414-3419.
DOI URL |
[26] |
KIM H N, MOON J H . Enhanced photovoltaic properties of Nb2O5-coated TiO2 3D ordered porous electrodes in dye-sensitized solar cells. ACS Appl. Mater. Inter., 2012,4(9):5821-5825.
DOI URL |
[27] |
KATOH R, FURUBE A . Electron injection efficiency in dye- sensitized solar cells. J. Photoch. Photobio.C, 2014,20(9):1-16.
DOI URL |
[28] |
PARK S Y, HAN Y S . Efficient dye-sensitized solar cells with surface-modified photoelectrodes. Sol.Energy, 2014,110:260-267.
DOI URL |
[29] |
NISSFOLK J, FREDIN K, HAGFELDT A , et al. Recombination and transport processes in dye-sensitized solar cells investigated under working conditions. J. Phys. Chem.B, 2006,110(36):17715-17718.
DOI URL PMID |
[30] |
HAGFELDT A, BOSCHLOO G, SUN L C , et al. Dye-sensitized solar cells. Chem. Rev., 2010,110:6595-6663.
DOI URL |
[31] |
THAVASI V, RENUGOPALAKRISHNAM V, JOSE R , et al. Controlled electron injection and transport at materials interfaces in dye sensitized solar cells. Mat. Sci. Eng. R., 2009,63(3):81-89.
DOI URL |
[32] |
LIU W, WANG H, WANG X , et al. Titanium mesh supported TiO2 nanowire arrays/Nb-doped TiO2 nanoparticles for fully flexible dye-sensitized solar cells with improved photovoltaic properties. J. Mater. Chem.C, 2016,4:11118-11128.
DOI URL |
[33] |
LIU W Q, KOU D X, CAI M L , et al. The intrinsic relation between the dynamic response and surface passivation in dye-sensitized solar cells based on different electrolytes. J. Phys. Chem.C, 2010,114(21):9965-9969.
DOI URL |
[34] |
QADIR M B, SUN K C, SAHITO I A , et al. Composite multi-functional over layer: a novel design to improve the photovoltaic performance of DSSC. Sol. Energ. Mat. Sol. C., 2015,140:141-149.
DOI URL |
[1] | 程厚燕, 罗俊, 黄丽群, 李家科, 杨志胜, 郭平春, 王艳香, 张琦锋. 基于ZnO纳米片多级结构的柔性染料敏化太阳能电池的制备[J]. 无机材料学报, 2018, 33(5): 507-514. |
[2] | 梁 培, 邢 淞, 舒海波, 张 琳, 胡陈力. 准三维MoS2/graphene复合材料储锂性能研究[J]. 无机材料学报, 2016, 31(6): 575-580. |
[3] | 包晓慧, 明平美, 毕向阳. 碳化硅颗粒增强复合材料超疏水表面的制备[J]. 无机材料学报, 2016, 31(4): 383-387. |
[4] | 吕 霞, 彭同江, 孙红娟, 古朝建. pH值对聚合钛离子/蒙脱石复合结构及其TiO2纳米粒子的影响研究[J]. 无机材料学报, 2012, 27(12): 1294-1300. |
[5] | 赵红雨,范秋林,宋力昕,施尔畏,胡行方. 纳米复合超硬薄膜的研究现状[J]. 无机材料学报, 2004, 19(1): 9-16. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||