无机材料学报 ›› 2019, Vol. 34 ›› Issue (6): 573-589.DOI: 10.15541/jim20180403
• 综述 • 下一篇
李纳1,刘斌1,施佼佼1,薛艳艳1,赵衡煜1,施张丽1,侯文涛1,徐晓东2(),徐军1()
收稿日期:
2018-09-03
修回日期:
2018-10-10
出版日期:
2019-06-20
网络出版日期:
2019-05-23
作者简介:
李 纳(1992-), 女, 博士. E-mail: 1710069@tongji.edu.cn
基金资助:
Na LI1,Bin LIU1,Jiao-Jiao SHI1,Yan-Yan XUE1,Heng-Yu ZHAO1,Zhang-Li SHI1,Wen-Tao HOU1,Xiao-Dong XU2(),Jun Xu1()
Received:
2018-09-03
Revised:
2018-10-10
Published:
2019-06-20
Online:
2019-05-23
Supported by:
摘要:
可见光激光在数据存储、光通讯、激光显示、激光医疗、激光打印以及科学研究等领域具有非常重要的应用价值。随着蓝光LD泵浦源的商用化, 直接泵浦稀土离子掺杂激光晶体实现可见光激光输出吸引了人们极大的研究兴趣。目前, 可见光稀土离子主要集中在Pr 3+、Dy 3+、Tb 3+和Sm 3+等。其中, Pr 3+的研究较多, 发光波长涵盖面较广, 发射波段覆盖蓝光、绿光、红光、橙光; Dy 3+和Tb 3+因为能够发射黄光以填补Pr 3+的不足也吸引了广泛的研究; 此外, Sm 3+和Eu 3+也是典型的可见波段稀土发光离子。本文综述了近几年可见波段稀土离子掺杂激光晶体的研究现状, 主要以Pr 3+、Dy 3+、Tb 3+和Sm 3+掺杂YAlO3 (YAP)、Mg : SrAl12O19 (SRA)等晶体为研究对象, 总结了一套适合Pr 3+掺杂材料的判据, 对晶体生长、结构、热学性能、偏振光谱性能和激光性能进行了系统的研究。
中图分类号:
李纳, 刘斌, 施佼佼, 薛艳艳, 赵衡煜, 施张丽, 侯文涛, 徐晓东, 徐军. 可见光波段稀土激光晶体的研究进展[J]. 无机材料学报, 2019, 34(6): 573-589.
Na LI, Bin LIU, Jiao-Jiao SHI, Yan-Yan XUE, Heng-Yu ZHAO, Zhang-Li SHI, Wen-Tao HOU, Xiao-Dong XU, Jun Xu. Research Progress of Rare-earth Doped Laser Crystals in Visible Region[J]. Journal of Inorganic Materials, 2019, 34(6): 573-589.
Transitions | Parameters | LLF | YLF | GLF | LaF3 | BYF | LMA | ASL | YAP | SRA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Absorption | ||||||||||||
3H4→3P2 | labs/nm σabs /(×10-20, cm2) FWHMabs /nm | 444 10.3 1.70 | 444 9.0 1.80 | 444 7.8 1.9 | 442 1.6 5 | 445 3.7 - | 444 1.2 7.1 | 444 1.3 - | 449 5.64 5.6 | 445 1.14 9.59 | ||
Emission | ||||||||||||
3P1→3H5 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 522 3 ~2 113.7 | 522 3 ~2 107.1 | 522 3 1 130.8 | 537 0.7 ~3 35.7 | 522 0.4 ~4 17.9 | 530 0.25 4 8.6 | 542 2 - 76 | 533 8.8 1.9 168.6 | 525 1.35 9.8 41.5 | ||
3P0→3H6 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 607 12 ~3 454.8 | 607 14 ~3 499.8 | 607 13 - 566.8 | 610 2.9 ~6.9 147.9 | 607 24.7 1.2 1062.1 | 625 3.7 11 127.7 | 620 2.9 - 110.2 | 621 25.01 1.56 479.2 | 622 3.52 6.53 108.3 | ||
3P0→3F2 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 640 21 ~0.7 795.9 | 640 22 ~0.7 785.4 | 640 23 - 1003 | 635 1.2 ~1 61.2 | 639 12.1 0.6 520.3 | 647 2.3 6.6 79.4 | 643 8.5 - 323 | 662 4.71 1.28 90.2 | 644 10.37 5.07 319.0 | ||
3P0→3F4 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 720 7 ~1 265.3 | 720 9 ~1 321.3 | 720 16 - 697.6 | 720 6.6 ~3 336.6 | 721 7.3 1.3 309.6 | 728 3.3 8.5 113.9 | 725 11 - 418 | 747 10.37 1.54 198.7 | 725 5.75 4.35 176.9 | ||
τf/μs | 37.90 | 35.70 | 43.6 | 51 | 43 | 34.5 | 38 | 19.16 | 30.76 | |||
Ref. | [23] | [23] | [23] | [24] | [25-26] | [27] | [28] | This work |
表1 Pr : YAP、Pr : SRA和其他已实现Pr3+激光输出晶体的光谱参数
Table 1 Lasing wavelength λem, emission cross-section σem and σemτ for the 3P0→3H6 transition of Pr3+ doped YAP and other crystals
Transitions | Parameters | LLF | YLF | GLF | LaF3 | BYF | LMA | ASL | YAP | SRA | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Absorption | ||||||||||||
3H4→3P2 | labs/nm σabs /(×10-20, cm2) FWHMabs /nm | 444 10.3 1.70 | 444 9.0 1.80 | 444 7.8 1.9 | 442 1.6 5 | 445 3.7 - | 444 1.2 7.1 | 444 1.3 - | 449 5.64 5.6 | 445 1.14 9.59 | ||
Emission | ||||||||||||
3P1→3H5 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 522 3 ~2 113.7 | 522 3 ~2 107.1 | 522 3 1 130.8 | 537 0.7 ~3 35.7 | 522 0.4 ~4 17.9 | 530 0.25 4 8.6 | 542 2 - 76 | 533 8.8 1.9 168.6 | 525 1.35 9.8 41.5 | ||
3P0→3H6 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 607 12 ~3 454.8 | 607 14 ~3 499.8 | 607 13 - 566.8 | 610 2.9 ~6.9 147.9 | 607 24.7 1.2 1062.1 | 625 3.7 11 127.7 | 620 2.9 - 110.2 | 621 25.01 1.56 479.2 | 622 3.52 6.53 108.3 | ||
3P0→3F2 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 640 21 ~0.7 795.9 | 640 22 ~0.7 785.4 | 640 23 - 1003 | 635 1.2 ~1 61.2 | 639 12.1 0.6 520.3 | 647 2.3 6.6 79.4 | 643 8.5 - 323 | 662 4.71 1.28 90.2 | 644 10.37 5.07 319.0 | ||
3P0→3F4 | lem/nm σem /(×10-20, cm2) FWHMem /nm σemτf /(×10-20, cm2·μs) | 720 7 ~1 265.3 | 720 9 ~1 321.3 | 720 16 - 697.6 | 720 6.6 ~3 336.6 | 721 7.3 1.3 309.6 | 728 3.3 8.5 113.9 | 725 11 - 418 | 747 10.37 1.54 198.7 | 725 5.75 4.35 176.9 | ||
τf/μs | 37.90 | 35.70 | 43.6 | 51 | 43 | 34.5 | 38 | 19.16 | 30.76 | |||
Ref. | [23] | [23] | [23] | [24] | [25-26] | [27] | [28] | This work |
Hosts | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
YLF | 491 | σ | 3PJ→3H4 | 6 | 70 | 285 | 2w-OPSL | 2014[ |
523 | π | 3PJ→3H5 | 45 | ~4200 | >500 | 2×2w-OPSL | 2016[ | |
546 | π | 3PJ→3H5 | 60 | 2000 | 120 | 2w-OPSL | 2014[ | |
605 | σ | 3PJ→3H6 | 25 | 2100 | ~1500 | Blue-LD | 2017[ 2017[ | |
640 | σ | 3PJ→3F2 | 50 | 4800 | ~500 | Blue-LD | ||
698 | σ | 3PJ→3F3 | 36 | 1300 | 78 | InGaN-LD | 2016[ | |
721 | π | 3PJ→3F4 | 53 | 1000 | 16 | 2w-OPSL | 2014[ | |
LLF | 523 | E//c | 3P0→3H5 | 56 | 52.7 | 10 | 2-OPSL | 2007[ |
607 | E//c | 3P0→3H6 | 31 | 34.5 | 26 | 2-OPSL | 2007[ | |
640 | E//c | 3P0→3F2 | 56 | 52.7 | 39 | 2-OPSL | 2007[ | |
722 | E//c | 3P0→3F4 | 46 | 50 | 31 | 2-OPSL | 2007[ | |
BYF | 495 | E//X | 3PJ→3H4 | 27 | 201 | 163 | 2w-OPSL | 2014[ |
607 | E//Y | 3PJ→3H6 | 12.6 | 99 | 264 | Blue-LD | 2014[ | |
639 | E//Y | 3PJ→3F2 | 6.4 | 60 | 146 | Blue-LD | 2014[ | |
KYF | 554 | - | 3PJ→3H5 | 27 | 121 | 166 | InGaN-LD | 2013[ |
610 | - | 3PJ→3H6 | 18 | 97 | 162 | InGaN-LD | 2013[ | |
645 | - | 3PJ→3F2 | 38 | 268 | 30 | InGaN-LD | 2013[ | |
YGF | 523 | E//a | 3PJ→3H5 | 11 | 63 | 148 | InGaN-LD | 2015[ |
538 | E//b | 3PJ→3H5 | 24 | 140 | 135 | InGaN-LD | 2015[ | |
604 | E//a | 3PJ→3H6 | 13 | 105 | 72 | InGaN-LD | 2015[ | |
638 | E//a | 3PJ→3F2 | 16 | 128 | 188 | InGaN-LD | 2015[ | |
700 | E//a | 3PJ→3F4 | 18 | 78 | 47 | InGaN-LD | 2015[ | |
724 | E//b | 3PJ→3F4 | 20 | 117 | 48 | InGaN-LD | 2015[ | |
CaF2 | 642 | - | 3PJ→3F2 | 7.5 | 22 | 305 | InGaN-LD | 2017[ |
LaF3 | 537 | π | 3PJ→3H5 | 16 | 15 | 159 | InGaN-LD | 2012[ |
612 | π | 3PJ→3H6 | 15 | 20 | 98 | InGaN-LD | 2012[ | |
635 | c | 3PJ→3F2 | 16 | 23 | 95 | InGaN-LD | 2012[ | |
720 | π | 3PJ→3F4 | 37 | 80 | 10 | InGaN-LD | 2012[ | |
ASL | 620 | π | 3PJ→3H6 | 11 | 50 | ~510 | 2w-OPSL | 2018[ 2018[ 2018[ |
643 | π | 3PJ→3F2 | 27 | 160 | ~200 | 2w-OPSL | ||
725 | π | 3PJ→3F4 | 37 | 318 | ~280 | 2w-OPSL | ||
LMA | 620 | σ | 3PJ→3H6 | 2 | 2.9 | ~100 | 2w-OPSL | 2012[ |
648 | σ | 3PJ→3F2 | 4 | 10.1 | ~90 | 2w-OPSL | 2012[ | |
729 | σ | 3PJ→3F4 | 12 | 63.7 | ~25 | 2w-OPSL | 2012[ | |
YAP | 547 | E//c | 3PJ→3H5 | 6.1 | 37 | 320 | InGaN-LD | 2013[ |
662 | E//c | 3PJ→3F2 | 9 | 27.4 | 680 | GaN-LD | 2011[ | |
747 | E//b | 3PJ→3F4 | 45 | 490 | 300 | 2×InGaN-LD | 2014[ | |
SRA | 525 | - | 3PJ→3H5 | - | 36 | ~1000 | 2w-OPSL | 2013[ |
623 | σ | 3PJ→3H6 | 11 | 114 | ~200 | 4×InGaN-LD | 2014[ | |
644 | - | 3PJ→3F2 | 37 | 1065 | ~500 | 2w-OPSL | 2013[ | |
724 | σ | 3PJ→3F4 | 50 | 564 | 15.5 | 4×InGaN-LD | 2014[ |
表2 Pr3+掺杂激光晶体在可见波段的连续激光输出
Table 2 Visible laser output of Pr3+ doped crystals
Hosts | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
YLF | 491 | σ | 3PJ→3H4 | 6 | 70 | 285 | 2w-OPSL | 2014[ |
523 | π | 3PJ→3H5 | 45 | ~4200 | >500 | 2×2w-OPSL | 2016[ | |
546 | π | 3PJ→3H5 | 60 | 2000 | 120 | 2w-OPSL | 2014[ | |
605 | σ | 3PJ→3H6 | 25 | 2100 | ~1500 | Blue-LD | 2017[ 2017[ | |
640 | σ | 3PJ→3F2 | 50 | 4800 | ~500 | Blue-LD | ||
698 | σ | 3PJ→3F3 | 36 | 1300 | 78 | InGaN-LD | 2016[ | |
721 | π | 3PJ→3F4 | 53 | 1000 | 16 | 2w-OPSL | 2014[ | |
LLF | 523 | E//c | 3P0→3H5 | 56 | 52.7 | 10 | 2-OPSL | 2007[ |
607 | E//c | 3P0→3H6 | 31 | 34.5 | 26 | 2-OPSL | 2007[ | |
640 | E//c | 3P0→3F2 | 56 | 52.7 | 39 | 2-OPSL | 2007[ | |
722 | E//c | 3P0→3F4 | 46 | 50 | 31 | 2-OPSL | 2007[ | |
BYF | 495 | E//X | 3PJ→3H4 | 27 | 201 | 163 | 2w-OPSL | 2014[ |
607 | E//Y | 3PJ→3H6 | 12.6 | 99 | 264 | Blue-LD | 2014[ | |
639 | E//Y | 3PJ→3F2 | 6.4 | 60 | 146 | Blue-LD | 2014[ | |
KYF | 554 | - | 3PJ→3H5 | 27 | 121 | 166 | InGaN-LD | 2013[ |
610 | - | 3PJ→3H6 | 18 | 97 | 162 | InGaN-LD | 2013[ | |
645 | - | 3PJ→3F2 | 38 | 268 | 30 | InGaN-LD | 2013[ | |
YGF | 523 | E//a | 3PJ→3H5 | 11 | 63 | 148 | InGaN-LD | 2015[ |
538 | E//b | 3PJ→3H5 | 24 | 140 | 135 | InGaN-LD | 2015[ | |
604 | E//a | 3PJ→3H6 | 13 | 105 | 72 | InGaN-LD | 2015[ | |
638 | E//a | 3PJ→3F2 | 16 | 128 | 188 | InGaN-LD | 2015[ | |
700 | E//a | 3PJ→3F4 | 18 | 78 | 47 | InGaN-LD | 2015[ | |
724 | E//b | 3PJ→3F4 | 20 | 117 | 48 | InGaN-LD | 2015[ | |
CaF2 | 642 | - | 3PJ→3F2 | 7.5 | 22 | 305 | InGaN-LD | 2017[ |
LaF3 | 537 | π | 3PJ→3H5 | 16 | 15 | 159 | InGaN-LD | 2012[ |
612 | π | 3PJ→3H6 | 15 | 20 | 98 | InGaN-LD | 2012[ | |
635 | c | 3PJ→3F2 | 16 | 23 | 95 | InGaN-LD | 2012[ | |
720 | π | 3PJ→3F4 | 37 | 80 | 10 | InGaN-LD | 2012[ | |
ASL | 620 | π | 3PJ→3H6 | 11 | 50 | ~510 | 2w-OPSL | 2018[ 2018[ 2018[ |
643 | π | 3PJ→3F2 | 27 | 160 | ~200 | 2w-OPSL | ||
725 | π | 3PJ→3F4 | 37 | 318 | ~280 | 2w-OPSL | ||
LMA | 620 | σ | 3PJ→3H6 | 2 | 2.9 | ~100 | 2w-OPSL | 2012[ |
648 | σ | 3PJ→3F2 | 4 | 10.1 | ~90 | 2w-OPSL | 2012[ | |
729 | σ | 3PJ→3F4 | 12 | 63.7 | ~25 | 2w-OPSL | 2012[ | |
YAP | 547 | E//c | 3PJ→3H5 | 6.1 | 37 | 320 | InGaN-LD | 2013[ |
662 | E//c | 3PJ→3F2 | 9 | 27.4 | 680 | GaN-LD | 2011[ | |
747 | E//b | 3PJ→3F4 | 45 | 490 | 300 | 2×InGaN-LD | 2014[ | |
SRA | 525 | - | 3PJ→3H5 | - | 36 | ~1000 | 2w-OPSL | 2013[ |
623 | σ | 3PJ→3H6 | 11 | 114 | ~200 | 4×InGaN-LD | 2014[ | |
644 | - | 3PJ→3F2 | 37 | 1065 | ~500 | 2w-OPSL | 2013[ | |
724 | σ | 3PJ→3F4 | 50 | 564 | 15.5 | 4×InGaN-LD | 2014[ |
Hosts | σabs/(×10-21, cm2) | β/% | σem/(×10-20, cm2) | τf/μs | Ref. |
---|---|---|---|---|---|
YAG | 1.6 | 50.96 | 1.50 | 376 | [64] |
YAl(BO3)4 | - | 65.90 | 1.90 | 520 | [65] |
LiLuF4 | - | 65.40 | 1.02 | 582 | [66] |
Lu2SiO4 | - | 61.0 | 0.74 | 509 | [67] |
KY3F10 | - | 59.8 | 0.83 | 440 | [66] |
Li2Gd4(MoO4)7 | σ: 2.5 π: 4.4 | σ:72.0 π: 71.9 | σ: 1.45 π: 1.34 | 139 | [68] |
YAP | a:0.743 b:0.690 c:0.870 | a:88.5 b:88.7 c:87.8 | a:0.298 b:0.450 c:0.452 | 185 | This work |
表3 Dy : YAP晶体与Dy3+掺杂其他基质的光谱参数
Table 3 Spectroscopic parameters of Dy3+ doped YAP and other crystals
Hosts | σabs/(×10-21, cm2) | β/% | σem/(×10-20, cm2) | τf/μs | Ref. |
---|---|---|---|---|---|
YAG | 1.6 | 50.96 | 1.50 | 376 | [64] |
YAl(BO3)4 | - | 65.90 | 1.90 | 520 | [65] |
LiLuF4 | - | 65.40 | 1.02 | 582 | [66] |
Lu2SiO4 | - | 61.0 | 0.74 | 509 | [67] |
KY3F10 | - | 59.8 | 0.83 | 440 | [66] |
Li2Gd4(MoO4)7 | σ: 2.5 π: 4.4 | σ:72.0 π: 71.9 | σ: 1.45 π: 1.34 | 139 | [68] |
YAP | a:0.743 b:0.690 c:0.870 | a:88.5 b:88.7 c:87.8 | a:0.298 b:0.450 c:0.452 | 185 | This work |
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Type | Year |
---|---|---|---|---|---|---|---|---|
Dy,Tb : LLF | 574 | σ | 4F9/2→6H13/2 | 13 | 55 | 320 | CW | 2014[ |
Dy,Eu : YLF | 574 | σ | 4F9/2→6H13/2 | 10 | 47 | 244 | CW | 2016[ 2016[ 2016[ |
Dy : LLF | 578 | σ | 4F9/2→6H13/2 | 4 | 17 | 188 | Self-pulsed | |
661 | π | 4F9/2→6H11/2 | 2 | 4 | 143 | Self-pulsed | ||
Dy : YAG | 583 | - | 4F9/2→6H13/2 | 12 | 150 | - | Self-pulsed | 2012[ |
Dy : ZnWO4 | 575 | E//b | 4F9/2→6H13/2 | 13 | 110 | 550 | CW | 2017[ |
表4 掺Dy3+激光晶体在可见波段的激光输出
Table 4 Laser output of Dy3+ doped some common laser crystal
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Type | Year |
---|---|---|---|---|---|---|---|---|
Dy,Tb : LLF | 574 | σ | 4F9/2→6H13/2 | 13 | 55 | 320 | CW | 2014[ |
Dy,Eu : YLF | 574 | σ | 4F9/2→6H13/2 | 10 | 47 | 244 | CW | 2016[ 2016[ 2016[ |
Dy : LLF | 578 | σ | 4F9/2→6H13/2 | 4 | 17 | 188 | Self-pulsed | |
661 | π | 4F9/2→6H11/2 | 2 | 4 | 143 | Self-pulsed | ||
Dy : YAG | 583 | - | 4F9/2→6H13/2 | 12 | 150 | - | Self-pulsed | 2012[ |
Dy : ZnWO4 | 575 | E//b | 4F9/2→6H13/2 | 13 | 110 | 550 | CW | 2017[ |
Host | labs/nm | σabs/(×10-22, cm2) | lem/nm | σem/(×10-22, cm2) | τf/ms | Ref. | |
---|---|---|---|---|---|---|---|
LLF | 488.8 | 3.0 | 585 | ~11 | 4.8 | [76] | |
TPP | 485 | 1.3 | 587 | 1.0 | 3.4 | [75] | |
TLP | 487 | 2.2 | 588 | 1.0 | 3.7 | [75] | |
TAB | 483 | 3.6 | 592 | 1.0 | 0.8 | [75] | |
PZABP | - | - | 582 | 0.7 | 0.42 | [77] | |
LBTAF | - | - | 585 | 0.58 | 1.27 | [78] | |
YAP | E//a | 486 | 3.3 | 590 | 1.72 | 1.72 | This work |
E//b | 484 | 5.2 | 591 | 2.73 | |||
E//c | 484 | 4.1 | 588 | 2.65 |
表5 Tb : YAP晶体与Tb3+掺杂其他材料的光谱参数
Table 5 Spectroscopic parameters of Tb3+ doped YAP and other crystals
Host | labs/nm | σabs/(×10-22, cm2) | lem/nm | σem/(×10-22, cm2) | τf/ms | Ref. | |
---|---|---|---|---|---|---|---|
LLF | 488.8 | 3.0 | 585 | ~11 | 4.8 | [76] | |
TPP | 485 | 1.3 | 587 | 1.0 | 3.4 | [75] | |
TLP | 487 | 2.2 | 588 | 1.0 | 3.7 | [75] | |
TAB | 483 | 3.6 | 592 | 1.0 | 0.8 | [75] | |
PZABP | - | - | 582 | 0.7 | 0.42 | [77] | |
LBTAF | - | - | 585 | 0.58 | 1.27 | [78] | |
YAP | E//a | 486 | 3.3 | 590 | 1.72 | 1.72 | This work |
E//b | 484 | 5.2 | 591 | 2.73 | |||
E//c | 484 | 4.1 | 588 | 2.65 |
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
Tb : YLF | 542 | σ | 5D4→7F5 | 55 | 158 | 8 | 2w-OPSL | 2016[ |
587 | π | 5D4→7F4 | 22 | 71 | 32 | 2w-OPSL | ||
Tb : LLF | 542 | σ | 5D4→7F5 | 52 | 1130 | 32 | 2w-OPSL | |
587 | π | 5D4→7F4 | 14 | 82 | 107 | 2w-OPSL | ||
Tb : KYF | 545 | σ | 5D4→7F5 | 34 | 793 | 25 | 2w-OPSL | |
584 | π | 5D4→7F4 | 5 | 18 | 38 | 2w-OPSL | ||
Tb : BLuF | 546 | σ | 5D4→7F5 | 46 | 270 | 18 | 2w-OPSL | |
Tb : CaF2 | 541 | - | 5D4→7F5 | 48 | 103 | ~34 | 2w-OPSL | 2017[ |
表6 掺Tb3+激光晶体室温下的可见波段连续激光输出
Table 6 Laser output of Tb3+ doped some common laser crystal
Crystals | λem/nm | Polarizations | Laser transitions | ηslope/% | Pout/mW | Pthr/mW | Pump source | Year |
---|---|---|---|---|---|---|---|---|
Tb : YLF | 542 | σ | 5D4→7F5 | 55 | 158 | 8 | 2w-OPSL | 2016[ |
587 | π | 5D4→7F4 | 22 | 71 | 32 | 2w-OPSL | ||
Tb : LLF | 542 | σ | 5D4→7F5 | 52 | 1130 | 32 | 2w-OPSL | |
587 | π | 5D4→7F4 | 14 | 82 | 107 | 2w-OPSL | ||
Tb : KYF | 545 | σ | 5D4→7F5 | 34 | 793 | 25 | 2w-OPSL | |
584 | π | 5D4→7F4 | 5 | 18 | 38 | 2w-OPSL | ||
Tb : BLuF | 546 | σ | 5D4→7F5 | 46 | 270 | 18 | 2w-OPSL | |
Tb : CaF2 | 541 | - | 5D4→7F5 | 48 | 103 | ~34 | 2w-OPSL | 2017[ |
Sample | labs/nm | σabs/(×10-20, cm2) | FWHMabs /nm | lem/nm | σem/(×10-21, cm2) | FWHMem/nm | τf/ms | Ref. |
---|---|---|---|---|---|---|---|---|
Sm : SrAl12O19 | 400(σ) | 8.5(σ) | - | 593(σ) | 1.2(σ) | - | 3.4 | [88] |
Sm : LiLuF4 | 401(σ) | 1.04(σ) | 2.3(σ) | 606(π) | 1.3(π) | 7.5(σ) | 4.8 | [87-88] |
401(π) | 1.51(π) | 3.1(π) | 9.5(π) | |||||
Sm : LiYF4 | 401(σ) | 0.72(σ) | 3(σ) | 597(σ) | 0.679(σ) | 7.5(σ) | 4.8 | [86] |
401(π) | 1.37(π) | 2(π) | 605(π) | 1.039(π) | 9.5(π) | |||
Sm : YAP | 409(E//a) | 0.25(E//a) | 8.4(E//a) | 604(E//a) | 0.47(E//a) | 6.29(E//a) | 0.59 | This work |
409(E//b) | 0.67(E//b) | 10.2(E//b) | 604(E//b) | 1.01(E//b) | 6.32(E//b) | |||
409(E//c) | 0.86(E//c) | 9.4(E//c) | 610(E//c) | 0.96(E//c) | 3.26(E//c) |
表7 Sm : YAP晶体与Sm3+掺杂其他材料的光谱参数
Table 7 Spectroscopic parameters of Sm3+ doped YAP and other crystals
Sample | labs/nm | σabs/(×10-20, cm2) | FWHMabs /nm | lem/nm | σem/(×10-21, cm2) | FWHMem/nm | τf/ms | Ref. |
---|---|---|---|---|---|---|---|---|
Sm : SrAl12O19 | 400(σ) | 8.5(σ) | - | 593(σ) | 1.2(σ) | - | 3.4 | [88] |
Sm : LiLuF4 | 401(σ) | 1.04(σ) | 2.3(σ) | 606(π) | 1.3(π) | 7.5(σ) | 4.8 | [87-88] |
401(π) | 1.51(π) | 3.1(π) | 9.5(π) | |||||
Sm : LiYF4 | 401(σ) | 0.72(σ) | 3(σ) | 597(σ) | 0.679(σ) | 7.5(σ) | 4.8 | [86] |
401(π) | 1.37(π) | 2(π) | 605(π) | 1.039(π) | 9.5(π) | |||
Sm : YAP | 409(E//a) | 0.25(E//a) | 8.4(E//a) | 604(E//a) | 0.47(E//a) | 6.29(E//a) | 0.59 | This work |
409(E//b) | 0.67(E//b) | 10.2(E//b) | 604(E//b) | 1.01(E//b) | 6.32(E//b) | |||
409(E//c) | 0.86(E//c) | 9.4(E//c) | 610(E//c) | 0.96(E//c) | 3.26(E//c) |
图15 Pr3+、Dy3+、Tb3+、Sm3+、Ho3+、Er3+、Eu3+掺杂激光材料的输出功率与发射波长关系图
Fig. 15 Output power vs laser wavelength of Pr3+, Dy3+, Tb3+, Sm3+, Ho3+, Er3+, Eu3+ doped some common crystals
[1] | 徐军 . 激光材料科学与技术前沿. 上海: 上海交通大学出版社, 2007. |
[2] | 徐军 . 稀土激光晶体材料及其应用. 北京: 科学出版社, 2016. |
[3] | 徐军 . 新型激光晶体材料及其应用. 北京: 科学出版社, 2016. |
[4] |
ZHAO LING, YAO YI, ZHAO YANG , et al. All-solid-state dual end pumped YVO4:Nd/LBO blue laser with 21.8 W output power at 457 nm. Opt. Spectrosc., 2014,116(3):470-472.
DOI URL |
[5] |
KANTOLA EMMI, LEINONEN TOMI, RANTA SANNA , et al. High-efficiency 20 W yellow VECSEL. Opt. Express, 2014,22(6):6372-6380.
DOI URL PMID |
[6] |
YU HAO-HAI, ZONG NAN, PAN ZHONG-BEN , et al. Efficient high-power self-frequency-doubling Nd:GdCOB laser at 545 and 530 nm. Opt. Lett., 2011,36(19):3852-3854.
DOI URL PMID |
[7] |
FANG QIAN-NAN, LU DA-ZHI, YU HAO-HAI , et al. Self- frequency-doubled vibronic yellow Yb:YCOB laser at the wavelength of 570 nm. Opt. Lett., 2016,41(5):1002-1005.
DOI URL PMID |
[8] |
PASCHOTTA RUDIGE, MOORE NICK, CLARKSON W, ANDRE W . et al. 230 mW of blue light from a thulium-doped upconversion fiber laser. IEEE.[J]. Sele. Top. Quant., 1997,3(4):1100-1102.
DOI URL |
[9] |
SANDROCK T, SCHEIFE H, HEUMANN E , et al. High-power continuous-wave upconversion fiber laser at room temperature. Opt. Lett., 1997,22(11):808-810.
DOI URL PMID |
[10] |
ROTH PRTER W, MACLEAN ALEXANDER J, BURNS DAVID , et al. Directly diode-laser-pumped Ti:sapphire laser. Opt. Lett., 2009,34(21):3334-3336.
DOI URL PMID |
[11] |
GÜREL K, WITTWER V J, HOFFMANN M , et al. Green-diode- pumped femtosecond Ti: sapphire laser with up to 450 mW average power. Opt. Express, 2015,23(23):30043-30048.
DOI URL PMID |
[12] |
NAKAMURA SHUJI, SENOH MASAYUKI, NAGAHAMA SHIN-ICHI , et al. InGaN-based multi-quantum-well-structure laser diodes. Jpn.[J]. Appl. Phys., 1996,35(1B):74-76.
DOI URL |
[13] |
KUZNETSOV M, HAKIMI F, SPRAGUE R , et al. High-power(>0.5-W CW) diode-pumped vertical-external-cavity surface- emitting semiconductor lasers with circular TEM00 beams. IEEE Photonics Tech., 1997,9(8):1063-1065.
DOI URL |
[14] |
MCINERNEY J G, MOORADIAN A, LEWIS A , et al. High- power surface emitting semiconductor laser with extended vertical compound cavity. Electron. Lett., 2003,39(6):523-525.
DOI URL |
[15] |
REICHERT FABIAN, MARZAHL DANIEL-TIMO, METZ PHILIP-WERNER , et al. Efficient laser operation of diode- pumped Pr 3+,Mg 2+:SrAl12O19 . Appl. Phys.B, 2014,116(1):109-113.
DOI URL |
[16] | MALINOWSKI M, JOUBERT M F, MAHIOU R , et al. Visible laser emission of Pr 3+ in various hosts . J. Phys.IV, 1994,4(C4):541-544. |
[17] |
KRÄNKEL CHRISTIAN, MARZAHL DANIEL-TIMMO, MOGLIA FRANCESCA , et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers. Laser. Photon. Rev., 2016,10(4):548-568.
DOI URL |
[18] |
LIU BIN, SHI JIAO-JIAO, WANG QING-GUO , et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Pr:YAlO3.[J]. Lumin., 2018,196:76-80.
DOI URL |
[19] |
REICHERT FABINA, MARAZAHL DANIEL-TIMO, HUBER- GUNTER . Spectroscopic characterization and laser performance of Pr,Mg:CaAl12O19. J. Opt. Soc. Am.B, 2014,31(2):349-354.
DOI URL |
[20] |
FECHNER M, REICHERT F, HANSEN NO , et al. Crystal growth, spectroscopy, and diode pumped laser performance of Pr,Mg:SrAl12O19. Appl. Phys. B, 2011,102(4):731-735.
DOI URL |
[21] |
DANGER T, BLECKMANN A, HUBER G . Stimulated emission and laser action of Pr 3+-doped YAlO3. Appl. Phys. B, 1994,58(5):413-420.
DOI URL |
[22] |
WANG YAN, LI JIAN-FU, YOU ZHEN-YU , et al. Spectroscopic properties of Pr 3+:Gd3Ga5O12 crystal. [J]. Alloy. Compd., 2010,502(1):184-189.
DOI URL |
[23] |
CORNACCHIA F, LIETO A-DI, TONELLI M , et al. Efficient visible laser emission of GaN laser diode pumped Pr-doped fluoride scheelite crystals. Opt. Express, 2008,16(20):15932-15941.
DOI URL PMID |
[24] |
RECHICHERT F, MOGLIA F, MARZAHL D T , et al. Diode pumped laser operation and spectroscopy of Pr 3+: LaF3. Opt.Express, 2012,20(18):20387-20395.
DOI URL PMID |
[25] |
KHIARI S, VELAZQUEZ M, MONCORGE R , et al. Red-luminescence analysis of Pr 3+ doped fluoride crystals. [J]. Alloy. Compd., 2008,451:128-131.
DOI URL |
[26] |
HAKIM R, DAMAK K, TONCELLI A , et al. Growth, optical spectroscopy and Judd-Ofelt analysis of Pr-doped BaY2F8 monocrystals.[J]. Lumin., 2014,143:233-240.
DOI URL |
[27] | MARZAHL DANIEL-TIMO, REICHERT FABIN, FECHNER MATHIES , et al. Laser Operation and Spectroscopy of Pr 3+: LaMgAl11O19. 5th Eps-Qeod Europhoton Conference, 2012. |
[28] | SATTAYAPORN S, LOISEAU P, AKA G , et al. Crystal growth, spectroscopy and laser performances of Pr 3+:Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL). Opt.Express, 2008,26(2):1278-1289. |
[29] |
HOMMERICH U, BROWN E, AMEDZAKE P , et al. Mid-infrared (4.6 μm) emission properties of Pr3+ doped KPb2Br5. J. Appl. Phys., 2006,100:113507.
DOI URL |
[30] |
SOJKA L, TANG A, FURNISS D . et al. Broadband, mid-infrared emission from Pr 3+ doped GeAsGaSe chalcogenide fiber, optically clad . Opt. Mater., 2014,36:1076-1082.
DOI URL |
[31] |
WALSH BRIAN-M, HOMMERICH UWE, YOSHIKAWA AKIRA , et al. Mid-infrared spectroscopy of Pr-doped materials.[J]. Lumin., 2018,197:349-353.
DOI URL |
[32] |
ZANDI BAHRAM, MERKEL LARRY-D, GRUBER JOHN-B , et al. Optical spectra and analysis for Pr 3+in SrAl12O19. [J]. Appl. Phys., 1997,81(3):1047-1054.
DOI URL |
[33] |
MOOS H-WARREN . Spectroscopic relaxation processes of rare earth ions in crystals.[J]. Lumin., 1970,1(2):106-121.
DOI URL |
[34] |
DORENBOS P . 5d-level energies of Ce 3+ and the crystalline environment. I. Fluoride compounds. Phys. Rev. B, 2000,62(23):15640-15649.
DOI URL |
[35] | LAROCHE M, BRAUD ALAIN, GIAR D , et al. Spectroscopic investigations of the 4f5d energy levels of Pr 3+ in fluoride crystals by excited-state absorption and two-step excitation measurements. J. Opt. Soc. Am. B, 1999,16(12):2269-2277. |
[36] |
LAROCHE MATHIEU, DOUALAN JEAN-LOUIS, GIRARD SYLVAIN , et al. Experimental and theoretical investigations of the 4f 2\4f5d ground-state and excited-state absorption spectra of Pr 3+ in LiYF4. J. Opt. Soc. Am.B, 2000,17(7):1291-1303.
DOI URL |
[37] | LAYNE C B, LOWDERMILK W H, WECER M J . Multiyhonon relaxation of rare-earth ions in oxide glasses. Phys. Rev., 1977,16(1):11-20 |
[38] |
SCHUURAMANS M F H, VAN DIJK J M F . On radiative and non-radiative decay times in the weak coupling limit. Phy.B, 1984,123(2):131-155.
DOI URL |
[39] |
NIKL MATIN, YOSHIKAWA AKIRA . Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Optical Mater., 2015,3(4):463-481.
DOI URL |
[40] |
CHEUNG Y M, GAYEN S K . Excited-state absorption in Pr 3+:Y3Al5O12. Phys. Rev.B, 1994,49(21):14827-14835.
DOI URL |
[41] |
SOLOMON R, MUELLER L . Stimulated emission at 598.5 nm from Pr 3+ in LaF3 . Appl. Phys. Lett., 1963,3(8):135-137.
DOI URL |
[42] | SANDROCK T, DANGER T, HEUMANN E , et al. Efficient continuous wave-laser emission of Pr 3+-doped fluorides at room temperature. Appl. Phys.B, 1994,58(2):149-151 |
[43] |
SANDROCK T, HEUMANN E, HUBER G , et al. Continuous- wave Pr,Yb:LiYF4 Upconversion Laser in the Red Spectral Range at Room Temperature. Advanced Solid State Lasers,Optical Society of America, 1996.
DOI URL |
[44] |
METZ P-W, HASSE K, PARISI D , et al. Continuous-wave Pr 3+:BaY2F8 and Pr 3+:LiYF4 lasers in the cyan-blue spectral region . Opt. Lett., 2014,39(17):5158-5161.
DOI URL |
[45] |
METZ PHILIP-WERNER, REICHERT FABIAN, MOGLIA FRANCESCA , et al. High-power red, orange, and green Pr 3+:LiYF4 lasers . Opt. Lett., 2014,39(11):3193-3196.
DOI URL PMID |
[46] | TANAKA HIROKI, KANNARI FUMIHIKO . Power Scaling of Continuous-wave Visible Pr 3+:YLF Laser End-pumped by High Power Blue Laser Diodes . OSA Laser Congress, 2017. |
[47] |
LUO SAI-YU, YAN XI-GUN, CUI QIN , et al. Power scaling of blue-diode-pumped Pr:YLF lasers at 523.0, 604.1, 606.9, 639.4, 697.8 and 720.9 nm. Opt. Commun., 2016,380:357-360.
DOI URL |
[48] |
CORNACCHIA F, RICHTER A, HEUMANN E , et al. Visible laser emission of solid state pumped LiLuF4:Pr 3+. Opt . Express, 2007,15:992-1002.
DOI URL |
[49] |
SOTTILE ALBERTO, PARISI DANIELA, TONELLI MAURO . Multiple polarization orange and red laser emissions with Pr:BaY2F8. Opt. Express, 2014,22(11):13784-13791.
DOI URL PMID |
[50] |
METZ PHILIP W, MULLER SEBASTIAN, REICHERT FABIAN , et al. Wide wavelength tunability and green laser operation of diode-pumped Pr 3+:KY3F10. Opt. Express, 2013,21(25):31274-31281.
DOI URL PMID |
[51] |
YU HAO, JIANG DA-PENG, TANG FEI , et al. Enhanced photoluminescence and initial red laser operation in Pr:CaF2 crystal via co-doping Gd 3+ ions . Mater. Lett., 2017,206:140-142.
DOI URL |
[52] |
SATTAYAPORN S, LOISEAU P, AKA G , et al. Crystal growth, spectroscopy and laser performances of Pr 3+:Sr0.7La0.3Mg0.3Al11.7O19 (Pr:ASL) . Opt.Express, 2018,26(2):1278-1289.
DOI URL |
[53] |
FIBRICH MARTIN, SULC JAN, JELINKOVA HELENA . Pr:YAlO3 laser generation in the green spectral range. Opt. Lett., 2013,38(23):5024-5027.
DOI URL PMID |
[54] |
FIBRICH, JELINKOVA H, SULC J , et al. Pr:YAlO3 microchip laser at 662 nm. Laser Phys. Lett., 2011,8(2):116-119.
DOI URL |
[55] | FIBRICH M, SULC J, JELIN KOVA . 1Power-scaling of a Pr:YAlO3 microchip laser operating at 747 nm wavelength at room temperature. Laser Phys. Lett., 2014, 1(10): 105802-1-4. |
[56] |
REICHERT F, CALMANOT, MULLER S , et al. Efficient visible laser operation of Pr,Mg:SrAl12O19 channel waveguides. Opt. Lett., 2013,38(15):2698-2701.
DOI URL PMID |
[57] | REICHERT F, CALMANO T, MÜLLER S , et al. Visible Laser Operation of Pr,Mg:SrAl12O19 Waveguides. The European Conference on Lasers and Electro-Optics, 2013. |
[58] |
KRANKEL CHRISTIAN . Rare-earth-doped sesquioxides for diode-pumped high-power lasers in the 1-, 2-, and 3-μm spectral range. IEEE Journal of Selected Topics in Quantum Electronics, 2015,21(1):250-262.
DOI URL |
[59] |
DIALLO P T, BOUTIAUD P, MAHIOU R , et al. Red luminescence in Pr 3+-doped calcium titanates . Phys. Status Solidi., 1997,160(1):255-263.
DOI URL |
[60] |
LIU BIN, SHI JIAO-JIAO, WANG QING-GUO , et al. Crystal growth and yellow emission of Dy:YAlO3. Opt. Mater., 2017,72:208-213.
DOI URL |
[61] |
NING KAI-JIE, HE XIAO-MING, ZHANG LIAN-HAN , et al. Spectroscopic characteristics of GdVO4:Dy 3+ crystal . Opt. Mater., 2014,37:745-749.
DOI URL |
[62] |
YANG FU-GUI, TU CHAO-YANG, WANG HONG-YAN , et al. Growth and spectroscopy of Dy 3+ doped in ZnWO4 crystal . Opt. Mater., 2007,29(12):1861-1865.
DOI URL |
[63] |
LUPEI A, LUPEI V, GHEORGHE C , et al. Spectroscopic characteristics of Dy 3+ doped Y3Al5O12 transparent ceramics. J. Appl. Phys., 2011, 110(8): 083120-1-9.
DOI URL |
[64] |
BOWMAN R, O’CONNOR S, CONDON N J . Diode pumped yellow dysprosium lasers. Opt.Express, 2012,20(12):12906-1 2911.
DOI URL PMID |
[65] |
RYBA-ROMANOWSKI W, DOMINIAK-DZIK G, SOLARZ P , et al. Transition intensities and excited state relaxation dynamics of Dy 3+ in crystals and glasses: a comparative study . Opt. Mater., 2009,31(11):1547-1554.
DOI URL |
[66] |
BIGOTTA STEFANO, TONELLI M, CAVALLI E , et al. Optical spectra of Dy 3+ in KY3F10 and LiLuF4 crystalline fibers. [J]. Lumin., 2010,130(1):13-17.
DOI URL |
[67] |
DOMINIAK-DZIK G, RYBA-ROMANOWSKI W, LISIECKI R , et al. Dy-doped Lu2SiO5 single crystal: spectroscopic characteristics and luminescence dynamics. Appl.Phys.B, 2009,99(1/2):285-297.
DOI URL |
[68] |
ZHOU WEI-WEI, WEI BO, ZHAO WANG , et al. Intense yellow emission in Dy 3+-doped LiGd(MoO4)2 crystal for visible lasers. Opt. Mater., 2011,34(1):56-60.
DOI URL |
[69] | MALINOWSKI M, MYZIAK P, PIRAMIDOWICZ R , et al. Spectroscopic and laser properties of LiNbO3:Dy 3+ crystals. Acta Phys. Pol.A, 1996,1(90):181-189. |
[70] | LIMPERT J, ZELLMER H, RIEDEL P , et al. Laser Oscillation in Yellow and Blue Spectral Range in Dy 3+:ZBLAN. Lasers and Electro-Optics, 2001. CLEO'01 . Technical Digest, 2001: 353-354. |
[71] |
XIA ZHONG-CHAO, YANG FU-GUI, QIAO LIANG , et al. End pumped yellow laser performance of Dy 3+:ZnWO4 . Opt. Commun., 2017,387:357-360.
DOI URL |
[72] |
BOLOGNESI GIACOMO, PARIS DANIELA, CALONICO DAVIDE , et al. Yellow laser performance of Dy 3+ in co-doped Dy,Tb:LiLuF4 . Opt. Lett., 2014,39(23):6628-6631.
DOI URL |
[73] |
LOIKO PAVEL, MATEOS XAVIER, DUNINA ELENA , et al. Judd-Ofelt modelling and stimulated-emission cross-sections for Tb 3+ ions in monoclinic KYb(WO4)2 crystal. J. Lumin., 2017,190:37-44.
DOI URL |
[74] |
LIU BIN, SHI JIAO-JIAO, WANG QING-GUO , et al. Crystal growth, polarized spectroscopy and Judd-Ofelt analysis of Tb:YAlO3. Spectrochim. Acta.A, 2018,200:58-62.
DOI URL |
[75] |
COLAK S, ZWICKER W K . Transition rates of Tb 3+ in TbP5O14, TbLiP4O12, and TbAl3 (BO3)4: an evaluation for laser applications. J. Appl. Phys., 1983,54(5):2156-2166.
DOI URL |
[76] | METZ P W, MARZAHL D T, MAJID A , et al. High Power Continuous Wave Visible Tb 3+:LiLuF4 Laser . Advanced Solid State Lasers Conference, 2015: ATu1A. 1. |
[77] |
KESAVULU C R, IDAALME SILVA ANIELLE-CHRISTINE, DOUSTI M-R , et al. Concentration effect on the spectroscopic behavior of Tb 3+ ions in zinc phosphate glasses. [J]. Lumin., 2015,165:77-84.
DOI URL |
[78] |
JAMALAIAH B C, SURESH KUMAR, MOHAN BABU A , et al. Study on spectroscopic and fluorescence properties of Tb 3+-doped LBTAF glasses. Physica B Condens.Matter, 2009,404(14/15):2020-2024.
DOI URL |
[79] | ANDREEV S I, BEDILOV M R, KARAPETYAN G O , et al. Stimulated radiation of glass activated by terbium. Sov.[J]. Opt. Tech., 1967,34:819. |
[80] | YAMASHITA TATSUYA, OHISHI YASUTAKE . Amplification and lasing characteristics of Tb 3+-doped fluoride fiber in the 0.54 µm band. Jpn. [J]. Appl. Phys., 2007,46(11):991-993. |
[81] | METZ P W, MARZAHL D T, MAJID A , et al. Efficient continuous wave laser operation of Tb 3+-doped fluoride crystals in the green and yellow spectral regions . Laser & Photonics Reviews, 2016,10(2):335-344. |
[82] |
PHILIP WERNER METZ, DANIEL-TIMO MARZAHL, GÜNTER HUBER , et al. Performance and wavelength tuning of green emitting terbium lasers. Opt.Express, 2017,17(25):5716-5724.
DOI URL PMID |
[83] | 刘斌 . 可见波段稀土离子掺杂激光晶体的生长和性能研究. 上海: 同济大学博士学位论文, 2018. |
[84] |
DOMINIAK-DZIK GRAZYNA . Sm 3+-doped LiNbO3 crystal, optical properties and emission cross-sections. [J]. Alloy. Compd., 2005,391(1/2):26-32.
DOI URL |
[85] |
PUGH-THOMAS D . Spectroscopic properties and Judd-Ofelt analysis of BaY2F8:Sm 3+. J. Opt. Soc. Am.B, 2014,31(8):1777-1785.
DOI URL |
[86] |
WANG G Q, LIN Y-F, GONG X H , et al. Polarized spectral properties of Sm 3+:LiYF4 crystal. [J]. Lumin., 2014,147:23-26.
DOI URL |
[87] |
WANG G Q, GONG X H, LIN Y F , et al. Polarized spectral properties of Sm 3+:LiLuF4 crystal for visible laser application . Opt. Mater., 2014,37:229-234.
DOI URL |
[88] |
MARZAHL D T, METZ P W, KRANKEL C , et al. Spectroscopy and laser operation of Sm 3+-doped lithium lutetium tetrafluoride (LiLuF4) and strontium hexaaluminate (SrAl12O19). Opt.Express, 2015,23(16):21118-211127.
DOI URL |
[89] | KAZAKOV B N, ORLOV M S, PETROV M V , et al. Induced emission of Sm 3+ ions in the visible region of the spectrum. Opt.Spectros, 1979,47:676-677. |
[90] |
FARRIES M C, MORKEL P R, TOWNSEND J E . Samarium 3+-doped glass laser operating at 651 nm . Electron. Lett., 1988,24(11):709-711.
DOI URL |
[91] |
KOOPMANN P, LAMRINI S, SCHOLLE K , et al. Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm. Opt.Express, 2013,21(3):3926-3931.
DOI URL PMID |
[92] |
WALSH B M, GREW G W, BARNES N P . Energy levels and intensity parameters of Ho 3+ ions in GdLiF4, YLiF4 and LuLiF4. [J]. Phys.-Condens. Mat., 2005,17(48):7643-7665.
DOI URL |
[93] |
NOSTRAND M C, PAGE R H, PAYNE S A , et al. Optical properties of Dy 3+-and Nd 3+-doped KPb2Cl5. J. Opt. Soc. Am.B, 2001,18(3):264-276.
DOI URL |
[94] | RADEMAKER K, KRUPKE W F, PAGE R H , et al. Optical properties of Nd 3+-and Tb 3+-doped KPb2Br5 and RbPb2Br5 with low nonradiative decay. J. Opt. Soc. Am.B, 2004,21(12):2117-2129. |
[95] | VORONKO Y K, KAMINSKII A A, OSIKO V V , et al. Stimulated emission of Ho 3+ in CaF2 at lambda=551.2 nm . ZhETF Pisma Redaktsiiu, 1965,1:5. |
[96] |
CHICKLIS E, NAIMAN C, ESTEROWITZ L , et al. Deep red laser emission in Ho:YLF. IEEE[J]. Quantum Electron., 1977,13(11):893-895.
DOI URL |
[97] |
REICHERT F, MOGLA F, METZ P-W , et al. Prospects of holmium- doped fluorides as gain media for visible solid state lasers. Opt. Mater.Express, 2015,5(1):88-101.
DOI URL |
[98] |
FUNK DAVID-S, EDEN J-GARY . Laser diode-pumped holmium- doped fluorozirconate glass fiber laser in the green (λ-544-549 nm). IEEE[J]. Quantum Electron, 2001,37(8):980-992.
DOI URL |
[99] | GARBUZOV D, KUDRYASHOV I, DUBINSKII M. 110 W( 0.9 J ) pulsed power from resonantly diode-laser-pumped 1.6-μm Er:YAG laser. Appl. Phys. Letter, 2005, 87(12): 121101-1-4. |
[100] |
LI T, BEIL K, KRANKEL C , et al. Efficient high-power continuous wave Er:Lu2O3 laser at 2.85 μm. Opt. Letter., 2012,37(13):2568-2570.
DOI URL PMID |
[101] |
JENSEN T, DIENING A, HUBER G , et al. Investigation of diode- pumped 2.8-μm Er:LiYF4 lasers with various doping levels. Opt.Letter, 1996,21(8):585-587.
DOI URL |
[102] |
MOGLIA FRANCESCA, MULLER SEBASTIAN, REICHERT FABIAN , et al. Efficient upconversion-pumped continuous wave Er 3+:LiLuF4 lasers . Opt. Mater., 2015,42:167-173.
DOI URL |
[103] |
JOHNSON L F, GUGGENHEIM H J . Infrared-pumped visible laser. Appl. Phys.Letter, 1971,19(2):44-47.
DOI URL |
[104] |
DANGER T, KOETKE J, BREDE R , et al. Spectroscopy and green upconversion laser emission of Er 3+-doped crystals at room temperature. [J]. Appl. Phys., 1994,76(3):1413-1422.
DOI URL |
[105] |
DORENBOS P . The 4f n ↔ 4f n-15d transitions of the trivalent lanthanides in halogenides and chalcogenides. [J]. Lumin., 2000,91(1/2):91-106.
DOI URL |
[106] | TOMA O . Emission regimes of a green Er:YLiF4 Laser. IEEE[J]. Quantum Electron., 2007,43(7):519-526. |
[107] |
BREDE R, DANGER T, HEUMANN E , et al. Room-temperature green laser emission of Er:LiYF4. Appl. Phys. Lett., 1993,63(6):729-730.
DOI URL |
[108] | 孙家跃, 杜海燕, 胡文祥 . 固体发光材料. 北京: 化学工业出版社, 2003: 89. |
[109] |
DASHKEVICH V I, BAGAYEV S N, ORLOVICH V A , et al. Quasi-continuous wave and continuous wave laser operation of Eu:KGd(WO4)2crystal on a5D0→ 7F4 transition. Laser Phys. Lett., 2015, 12(1): 015006-1-7.
DOI URL |
[110] |
DEMESH MAXIM, YASUKEVICH ANATOL, KISEL VIKTOR , et al. Spectroscopic properties and continuous-wave deep-red laser operation of Eu 3+-doped LiYF4 . Opt. Lett., 2018,43(10):2364-2367.
DOI URL |
[111] | SHI JIAO-JIAO, LIU BIN, WANG QING-GUO , et al. Crystal growth and spectral properties of Tb:Lu2O3. Chin. Phys. B, 2018, 27(9): 097801-1-6. |
[1] | 丁玲, 蒋瑞, 唐子龙, 杨运琼. MXene材料的纳米工程及其作为超级电容器电极材料的研究进展[J]. 无机材料学报, 2023, 38(6): 619-633. |
[2] | 杨卓, 卢勇, 赵庆, 陈军. X射线衍射Rietveld精修及其在锂离子电池正极材料中的应用[J]. 无机材料学报, 2023, 38(6): 589-605. |
[3] | 陈强, 白书欣, 叶益聪. 热管理用高导热碳化硅陶瓷基复合材料研究进展[J]. 无机材料学报, 2023, 38(6): 634-646. |
[4] | 林俊良, 王占杰. 铁电超晶格的研究进展[J]. 无机材料学报, 2023, 38(6): 606-618. |
[5] | 牛嘉雪, 孙思, 柳鹏飞, 张晓东, 穆晓宇. 铜基纳米酶的特性及其生物医学应用[J]. 无机材料学报, 2023, 38(5): 489-502. |
[6] | 苑景坤, 熊书锋, 陈张伟. 聚合物前驱体转化陶瓷增材制造技术研究趋势与挑战[J]. 无机材料学报, 2023, 38(5): 477-488. |
[7] | 杜剑宇, 葛琛. 光电人工突触研究进展[J]. 无机材料学报, 2023, 38(4): 378-386. |
[8] | 杨洋, 崔航源, 祝影, 万昌锦, 万青. 柔性神经形态晶体管研究进展[J]. 无机材料学报, 2023, 38(4): 367-377. |
[9] | 游钧淇, 李策, 杨栋梁, 孙林锋. 氧化物双介质层忆阻器的设计及应用[J]. 无机材料学报, 2023, 38(4): 387-398. |
[10] | 林思琪, 李艾燃, 付晨光, 李荣斌, 金敏. Zintl相Mg3X2(X=Sb, Bi)基晶体生长及热电性能研究进展[J]. 无机材料学报, 2023, 38(3): 270-279. |
[11] | 陈昆峰, 胡乾宇, 刘锋, 薛冬峰. 多尺度晶体材料的原位表征技术与计算模拟研究进展[J]. 无机材料学报, 2023, 38(3): 256-269. |
[12] | 张超逸, 唐慧丽, 李宪珂, 王庆国, 罗平, 吴锋, 张晨波, 薛艳艳, 徐军, 韩建峰, 逯占文. 新型GaN与ZnO衬底ScAlMgO4晶体的研究进展[J]. 无机材料学报, 2023, 38(3): 228-242. |
[13] | 齐占国, 刘磊, 王守志, 王国栋, 俞娇仙, 王忠新, 段秀兰, 徐现刚, 张雷. GaN单晶的HVPE生长与掺杂进展[J]. 无机材料学报, 2023, 38(3): 243-255. |
[14] | 谢兵, 蔡金峡, 王铜铜, 刘智勇, 姜胜林, 张海波. 高储能密度聚合物基多层复合电介质的研究进展[J]. 无机材料学报, 2023, 38(2): 137-147. |
[15] | 刘岩, 张珂颖, 李天宇, 周菠, 刘学建, 黄政仁. 陶瓷材料电场辅助连接技术研究现状及发展趋势[J]. 无机材料学报, 2023, 38(2): 113-124. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||