无机材料学报 ›› 2019, Vol. 34 ›› Issue (5): 560-566.DOI: 10.15541/jim20180571
收稿日期:
2018-12-04
出版日期:
2019-05-20
网络出版日期:
2019-05-14
作者简介:
SUN Chao-Xiang(1995-), male, undergraduate. E-mail: 2196728627@qq.com
Chao-Xiang SUN,Liang CHEN,Yu CHANG,Wei TIAN(),Liang LI
Received:
2018-12-04
Published:
2019-05-20
Online:
2019-05-14
Supported by:
摘要:
自驱动光探测器能够在无外加偏压的情况下将光信号转化为电信号, 在工业和军事领域有着广泛的应用。本研究报道了p型Se薄膜和n型ZnO纳米棒阵列异质结的可控合成以及它们作为自驱动紫外-可见光探测器的应用。由于在ZnO和Se的界面处形成的内建电场将光生电子-空穴对分离, 促使它们向相反方向传输, 最终被电极收集, 在0偏压下获得了较高的光电流(435 pA), 从而实现无线的自驱动光电探测。并且, 在Se和ZnO界面处沉积的Al2O3层有效降低了暗电流。最终, 此器件在500 nm的单色光下显示了高响应率55 μA·W -1和大比探测率5×10 10Jones, 并表现出了极快的响应速度(上升时间0.9 ms, 衰减时间0.3 ms)。
中图分类号:
孙超祥, 陈亮, 常宇, 田维, 李亮. 基于p-Se/Al2O3/n-ZnO纳米棒阵列异质结的自驱动紫外-可见光探测器[J]. 无机材料学报, 2019, 34(5): 560-566.
Chao-Xiang SUN, Liang CHEN, Yu CHANG, Wei TIAN, Liang LI. A Self-powered UV-visible Photodetector Based on p-Se/Al2O3/n-ZnO Nanorod Array Heterojunction[J]. Journal of Inorganic Materials, 2019, 34(5): 560-566.
Fig. 4 Typical I-V curves for Se-Al2O3-ZnO device under (a) dark, white light and (b) dark, monochromatic lights; I-t curves of the device under (c) dark, white light and (d) dark, monochromatic lights; (e) Long-term response of the device under 500 nm illumination; (f) Spectral responsivity and detectivity of the device at 0 bias voltage
Fig. 5 I-t curves of the Se/Al2O3/ZnO heterojunction device under illumination of (a) 405 nm and (c) 650 nm lasers with varying light intensities (The unit of the light power is mW·cm-2); Relationships between the photocurrent and the light intensity at 0 bias voltage under illumination of (b) 405 and (d) 650 nm lasers
Fig. 6 (a) Diagram of electric circuit to characterize the response speed; (b) Time-dependent voltage curves at different chopper frequency; (c) Normalized voltage-frequency curve; (d) Enlarged one response cycle with rise and decay time
[1] |
ZHENG L, TENG F, ZHANG Z , et al. Large scale, highly efficient and self-powered UV photodetectors enabled by all-solid-state n-TiO2 nanowell/p-NiO mesoporous nanosheet heterojunctions. J. Mater. Chem. C, 2016,4(42):10032-10039.
DOI URL |
[2] |
LIU X, GU L L, ZHANG Q P , et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat. Commun., 2014,5:4007-4016.
DOI URL PMID |
[3] |
TSAI D S, LIU K K, LIEN D H , et al. Few-layer MoS2 with high broadband photogain and fast optical switching for use in harsh environments. ACS Nano, 2013,7(5):3905-3911.
DOI URL PMID |
[4] |
LU H, TIAN W, CAO F R , et al. A self-powered and stable all-perovskite photodetector-solar cell nanosystem. Adv. Funct. Mater., 2016,26(8):1296-1302.
DOI URL |
[5] |
HATCH S M, BRISCOE J, DUNN S A . Self-powered ZnO- nanorod/CuSCN UV photodetector exhibiting rapid response. Adv. Mater., 2013,25(6):867-871.
DOI URL PMID |
[6] |
YANG Z, WANG M Q, DING J J , et al. Semi-transparent ZnO- CuI/CuSCN photodiode detector with narrow-band UV photoresponse. ACS Appl. Mater Interfaces., 2015,7(38):21235-21244.
DOI URL |
[7] | LI M, LIN C Y, YANG S H , et al. High mobilities in layered InSe transistors with indium-encapsulation-induced surface charge doping. Adv. Mater., 2018, 30(44): 1803690-1-10. |
[8] |
BIE Y Q, LIAO Z M, ZHANG H Z , et al. Self-powered, ultrafast, visible-blind UV detection and optical logical operation based on ZnO/GaN nanoscale p-n junctions. Adv. Mater., 2011,23(5):649-653.
DOI URL PMID |
[9] | CHEN H Y, LIU K W, HU L F , et al. New concept ultraviolet photodetector . Mater Today., 2015,18(9):493-502. |
[10] |
ZHANG H B, ZHANG X J, LIU C , et al. High-responsivity, high-detectivity, ultrafast topological insulator Bi2Se3/silicon heterostructure broadband photodetectors. ACS Nano, 2016,10(5):5113-5122.
DOI URL PMID |
[11] |
SHEN Y W, YAN X Q, BAI Z M , et al. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction. RSC Adv., 2015,5(8):5976-5981.
DOI URL |
[12] |
FANG X S, YAN J, HU L , et al. Thin SnO2 nanowires with uniform diameter as excellent field emitters: a stability of more than 2400 minutes. Adv. Funct. Mater., 2012,22(8):1613-1622.
DOI URL |
[13] |
FANG X S, BANDO Y, LIAO M , et al. Single-crystalline ZnS nanobelts as ultraviolet-light sensors. Adv. Mater., 2009,21(20):2034-2039.
DOI URL |
[14] |
LIU H, HU L, WATANABE K , et al. Cathodoluminescence modulation of ZnS nanostructures by morphology, doping, and temperature. Adv. Funct. Mater., 2013,23(29):3701-3709.
DOI URL |
[15] |
LIU H, GAO N, LIAO M , et al. Hexagonal-like Nb2O5 nanoplates- based photodetectors and photocatalyst with high performances. Sci. Rep., 2015,5:7716-7725.
DOI URL PMID |
[16] |
LI D, SUN X, SONG H , et al. Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater., 2012,24(6):845-849.
DOI URL PMID |
[17] |
BAI Z, CHEN X, YAN X , et al. Self-powered ultraviolet photodetectors based on selectively grown ZnO nanowire arrays with thermal tuning performance. Phys. Chem. Chem. Phys., 2014,16(20):9525-9529.
DOI URL PMID |
[18] |
QIN J, QIU G, JIAN J , et al. Controlled growth of a large-size 2D selenium nanosheet and its electronic and optoelectronic applications. ACS Nano, 2017,11(10):10222-10229.
DOI URL |
[19] |
LUO L B, YANG X B, LIANG F X , et al. Transparent and flexible selenium nanobelt-based visible light photodetector. CrystEngComm, 2012,14(6):1942-1947.
DOI URL |
[20] | LIU P, MA Y, CAI W , et al. Photoconductivity of single-crystalline selenium nanotubes. Nanotechnology, 2007, 18(20): 205704-1-5. |
[21] |
MASUZAWA T, SAITO I, YAMADA T , et al. Development of an amorphous selenium-based photodetector driven by a diamond cold cathode. Sensors, 2013,13(10):13744-13778.
DOI URL PMID |
[22] | CHAMPNESS C H, SHUKRI Z A, CHAN C H . Minority carrier diffusion length determination from capacitance measurements in Se-CdO photovoltaic cells. Can.[J]. Phys., 1991,69(34):538-542. |
[23] |
CHANG C Y, PAN F M, LIN J S , et al. Lateral amorphous selenium metal-insulator-semiconductor-insulator-metal photodetectors using ultrathin dielectric blocking layers for dark current suppression. J. Appl. Phys., 2016, 120(23): 234501-1-8.
DOI URL |
[24] |
CHEN Y Z, YOU Y T, CHEN P J , et al. Environmentally and mechanically stable selenium 1D/2D hybrid structures for broad- range photoresponse from ultraviolet to infrared wavelengths. ACS Appl. Mater. Interfaces, 2018,10(41):35477-35486.
DOI URL |
[25] |
ZHENG L, HU K, TENG F , et al. Novel UV-visible photodetector in photovoltaic mode with fast response and ultrahigh photosensitivity employing Se/TiO2 nanotubes heterojunction. Small, 2017, 13(5): 1602448-1-11.
DOI URL PMID |
[26] |
YU P, HU K, CHEN H , et al. Novel p-p heterojunctions self- powered broadband photodetectors with ultrafast speed and high responsivity. Adv. Funct. Mater., 2017, 27(38): 1703166-1-10.
DOI URL |
[27] |
HU K, CHEN H, JIANG M , et al. Broadband photoresponse enhancement of a high performance t-Se microtube photodetector by plasmonic metallic nanoparticles. Adv. Funct. Mater., 2016,26(36):6641-6648.
DOI URL |
[28] |
SHAO D, YU M, LIAN J , et al. Heterojunction photodiode fabricated from multiwalled carbon nanotube/ZnO nanowire/p-silicon composite structure. Appl. Phys. Lett., 2013, 102(2): 021107-1-3.
DOI URL |
[29] |
TIAN C, JIANG D, LI B , et al. Performance enhancement of ZnO UV photodetectors by surface plasmons. ACS Appl. Mater. Interfaces, 2014,6(3):2162-2166.
DOI URL PMID |
[30] | YANG W, HU K, TENG F , et al. High-performance silicon- compatible large-area UV-to-visible broadband photodetector based on integrated lattice-matched type II Se/n-Si heterojunctions. Nano Lett., 2018,18(8):4697-4703. |
[1] | 吐尔洪·木尼热, 赵红刚, 马玉花, 齐献慧, 李钰宸, 闫沉香, 李佳文, 陈平. 单晶WO3/红磷S型异质结的构建及光催化活性研究[J]. 无机材料学报, 2023, 38(6): 701-707. |
[2] | 伍林, 胡明蕾, 王丽萍, 黄少萌, 周湘远. TiHAP@g-C3N4异质结的制备及光催化降解甲基橙[J]. 无机材料学报, 2023, 38(5): 503-510. |
[3] | 王如意, 徐国良, 杨蕾, 邓崇海, 储德林, 张苗, 孙兆奇. p-n异质结BiVO4/g-C3N4光阳极的制备及其光电化学水解性能[J]. 无机材料学报, 2023, 38(1): 87-96. |
[4] | 马心全, 李喜宝, 陈智, 冯志军, 黄军同. S型异质结BiOBr/ZnMoO4的构建及光催化降解性能研究[J]. 无机材料学报, 2023, 38(1): 62-70. |
[5] | 陈士昆, 王楚楚, 陈晔, 李莉, 潘路, 文桂林. 磁性Ag2S/Ag/CoFe1.95Sm0.05O4 Z型异质结的制备及光催化降解性能[J]. 无机材料学报, 2022, 37(12): 1329-1336. |
[6] | 高娃, 熊宇杰, 吴聪萍, 周勇, 邹志刚. 基于超薄纳米结构的光催化二氧化碳选择性转化[J]. 无机材料学报, 2022, 37(1): 3-14. |
[7] | 刘彭, 吴仕淼, 吴昀峰, 张宁. Zn0.4(CuGa)0.3Ga2S4/CdS光催化材料的制备及其CO2还原性能[J]. 无机材料学报, 2022, 37(1): 15-21. |
[8] | 张大卫, 朱立远, 卢红亮, 王佐林. 钛表面氧化锌与纤连蛋白复合修饰应用于抗种植体周炎的研究[J]. 无机材料学报, 2021, 36(12): 1316-1322. |
[9] | 赵宇鹏,贺勇,张敏,史俊杰. 新型二维Zr2CO2/InS异质结可见光催化产氢性能的第一性原理研究[J]. 无机材料学报, 2020, 35(9): 993-998. |
[10] | 许世超,朱天哲,乔阳,白学健,唐楠,郑春明. Z型BiVO4/GO/g-C3N4复合材料的制备及其可见光下催化性能[J]. 无机材料学报, 2020, 35(7): 839-846. |
[11] | 谭仕林,尹顺达,欧阳钢. 尺寸效应对MoS2/WSe2范德华异质结构层间与俄歇复合的界面调控[J]. 无机材料学报, 2020, 35(6): 682-688. |
[12] | 林海, 苏玮韬, 朱玉, 彭湃, 冯苗, 于岩. WO3纳米花的热处理晶格调控及WO3/CdS/α-S异质结的构筑[J]. 无机材料学报, 2020, 35(12): 1349-1356. |
[13] | 陶友荣,陈晋强,吴兴才. 基于单根TaON纳米带的光晶体管与紫外到近红外响应[J]. 无机材料学报, 2019, 34(9): 1004-1010. |
[14] | 张之明,方晓生. ZnO纳米棒/ZnCo2O4纳米片异质结的制备及其光电探测性能[J]. 无机材料学报, 2019, 34(9): 991-996. |
[15] | 赵世怀,杨紫博,赵晓明,徐文文,温昕,张庆印. NiCo2S4@ACF异质电极材料的绿色制备及其超级电容性能研究[J]. 无机材料学报, 2019, 34(2): 130-136. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||