[1] |
FERRIS A, GARBARINO S, GUAY D , et al. 3D RuO2 microsupercapacitors with remarkable areal energy. Advanced Materials, 2015,27(42):6625-6629.
|
[2] |
WANG Q, WANG X, LIU B , et al. NiCo2O4 nanowire arrays supported on Ni foam for high-performance flexible all-solid-state supercapacitors. Journal of Materials Chemistry A, 2013,1(7):2468-2473.
|
[3] |
WALSH E D, HAN X, LACEY S D , et al. Dry-processed, binder- free holey graphene electrodes for supercapacitors with ultrahigh areal loadings. ACS Applied Materials & Interfaces, 2016,8(43):29478-29485.
|
[4] |
XIAO K, LI J W, CHEN G F , et al. Amorphous MnO2 supported on 3D-Ni nanodendrites for large areal capacitance supercapacitors. Electrochimica Acta, 2014,149:341-348.
|
[5] |
ZHOU H, HAN G, XIAO Y , et al. Facile preparation of polypyrrole/ graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors. Journal of Power Sources, 2014,263:259-267.
|
[6] |
QIN T, WAN Z, WANG Z , et al. 3D flexible O/N Co-doped graphene foams for supercapacitor electrodes with high volumetric and areal capacitances. Journal of Power Sources, 2016,336:455-464.
|
[7] |
YOO J J, BALAKRISHNAN K, HUANG J S , et al. Ultrathin planar graphene supercapacitors. Nano Letters, 2011,11(4):1423-1427.
|
[8] |
HUANG P, HEON M, PECH D , et al. Micro-supercapacitors from carbide derived carbon (CDC) films on silicon chips. Journal of Power Sources, 2013,225:240-244.
|
[9] |
WANG G P, ZHANG L, ZHANG J J . A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev., 2012,41(2):797-828.
|
[10] |
ICAZA J C, GUDURU R K . Electrochemical characterization of nanocrystalline RuO2 with aqueous multivalent (Be2+ and Al3+) sulfate electrolytes for asymmetric supercapacitors. Journal of Alloys and Compounds, 2018,735:735-740.
|
[11] |
SHIH Y T, LEE K Y, HUANG Y S . Characterization of iridium dioxide-carbon nanotube nanocomposites grown onto graphene for supercapacitor. Journal of Alloys and Compounds, 2015,619:131-137.
|
[12] |
WANG C F, LU S, CHEN H L , et al. One-pot synthesis and application in asymmetric supercapacitors of Mn3O4@RGO nanocomposites. Journal of Inorganic Materials, 2016,31(6):581-587.
|
[13] |
ZHANG L J, GAO B, ZHANG X G . Pyrolysis preparation of nickel oxide and its electrochemical capacitance. Journal of Inorganic Materials, 2011,26(4):398-402.
|
[14] |
DENG W, JI X, CHEN Q , et al. Electrochemical capacitors utilising transition metal oxides: an update of recent developments. RSC Advances, 2011,1(7):1171.
|
[15] |
YAN S, QU P, WANG H , et al. Synthesis of Ru/multiwalled carbon nanotubes by microemulsion for electrochemical supercapacitor. Materials Research Bulletin, 2008,43(10):2818-2824.
|
[16] |
YANG F, YAO J, LIU F , et al. Ni-Co oxides nanowire arrays grown on ordered TiO2 nanotubes with high performance in supercapacitors. Journal of Materials Chemistry A, 2013,1(3):594-601.
|
[17] |
YE J S, CUI H F, LIU X , et al. Preparation and characterization of aligned carbon nanotube-ruthenium oxide nanocomposites for supercapacitors. Small, 2005,1(5):560-565.
|
[18] |
QI X Y, ZHOU Q F, CUI M W , et al. Capacitive performance of Zn-Ni hydroxide nano-sheet arrays on nickel foams via a mild chemical-bath deposition process. Journal of Inorganic Materials, 2017,32(4):372-378.
|
[19] |
WU M S, YANG C H, WANG M J . Morphological and structural studies of nanoporous nickel oxide films fabricated by anodic electrochemical deposition techniques. Electrochimica Acta, 2008,54(2):155-161.
|
[20] |
YANG L, CHENG S, DING Y , et al. Hierarchical network architectures of carbon fiber paper supported cobalt oxide nanonet for high-capacity pseudocapacitors. Nano Letters, 2012,12(1):321-325.
|
[21] |
SUN H, LIN M, LIANG J , et al. Three-dimensional holey- graphene/niobia composite architectures for ultrahigh-rate energy storage. Science, 2017,356(6338):599-604.
|
[22] |
CHEN Y, ZHANG X, ZHANG D , et al. One-pot hydrothermal synthesis of ruthenium oxide nanodots on reduced graphene oxide sheets for supercapacitors. Journal of Alloys and Compounds, 2012,511(1):251-256.
|
[23] |
WANG Z, MA C, WANG H , et al. Facilely synthesized Fe2O3- graphene nanocomposite as novel electrode materials for supercapacitors with high performance. Journal of Alloys and Compounds, 2013,552:486-491.
|
[24] |
XU J, DING W, ZHAO W , et al. In situ growth enabling ideal graphene encapsulation upon mesocrystalline MTiO3 (M = Ni, Co, Fe) nanorods for stable lithium storage. ACS Energy Letters, 2017,2(3):659-663.
|
[25] |
ARDIZZONE S, FREGONARA G, TRASATTI S . Inner and outer active surface of RuO2 electrodes. Electrochimica Acta, 1990,35(1):263-267.
|
[26] |
LIN T, CHEN I.W, LIU F , et al. Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage. Science, 2015,350(6267):1508-1513.
|
[27] |
OPPEDISANO D, JONES L, JUNK T , et al. Ruthenium electrodeposition from aqueous solution at high cathodic overpotential. Journal of the Electrochemical Society, 2014,161(10):D489-D494.
|
[28] |
WANG W, GUO S, LEE I , et al. Hydrous ruthenium oxide nanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci. Rep., 2014, 4: 4452-1-9.
|