无机材料学报 ›› 2019, Vol. 34 ›› Issue (4): 417-424.DOI: 10.15541/jim20180240
收稿日期:
2018-05-21
修回日期:
2018-07-21
出版日期:
2019-04-20
网络出版日期:
2019-04-15
作者简介:
吴金结(1997-), 男, 本科生. E-mail:wujinjie1218@163.com
基金资助:
Jin-Jie WU,Yan LI,Ren-Chu WEI,Jian-Xin WANG,Shu-Xin QU,Jie WENG,Wei ZHI()
Received:
2018-05-21
Revised:
2018-07-21
Published:
2019-04-20
Online:
2019-04-15
Supported by:
摘要:
本研究考察微振动应力环境(MVS)下羟基磷灰石(HA)陶瓷的生物活性及力学稳定性, 探讨体内生理应力环境对HA陶瓷骨诱导性的影响。扫描电子显微镜(SEM)和钙离子释放结果均显示, MVS有利于具有较高微孔隙率((29±1.2)%, (26.4±0.3)%)HA材料的钙离子再沉积和类骨磷灰石层形成, 而对于微孔隙率较低((10.6±0.8)%)的HA材料则促进其钙离子释放。蛋白吸附结果显示40 Hz的MVS促进了HA的蛋白吸附, 60 Hz的MVS则显著抑制HA的蛋白吸附行为。抗压试验表明MVS应力环境并未影响HA多孔支架的力学稳定性。研究表明应力环境是影响HA陶瓷生物活性和骨诱导性的重要因素。
中图分类号:
吴金结, 李艳, 魏仁初, 汪建新, 屈树新, 翁杰, 智伟. 微振动应力环境影响羟基磷灰石陶瓷生物活性及力学稳定性的体外评价[J]. 无机材料学报, 2019, 34(4): 417-424.
Jin-Jie WU, Yan LI, Ren-Chu WEI, Jian-Xin WANG, Shu-Xin QU, Jie WENG, Wei ZHI. Bioactivity and Mechanical Stability of Hydroxyapatite Ceramicsunder Micro-vibration Environment[J]. Journal of Inorganic Materials, 2019, 34(4): 417-424.
图3 微振动对不同微孔隙率HA陶瓷片钙离子释放的影响
Fig. 3 Calcium release concentration of HA slices with different mass fraction (HA10, HA20, HA35) under 40 Hz and 60 Hz frequency and static state incubation environment at d3, d7 and d14 (* represents statistical difference, P<0.05)
图4 微振动对不同微孔隙率HA片蛋白吸附的影响
Fig. 4 Protein adsorption concentration of HA discs with different mass fraction (HA10, HA20, HA35) under 40 Hz and 60 Hz frequency and static state incubation environment at d1 and d3 (* represents statistical difference, P<0.05)
图5 HA在SBF溶液中3, 7 d后的SEM照片
Fig. 5 SEM results of HA ceramic discs with different mass fraction soaked in SBF solution for 3 and 7 d (a) Static state; (b) 40 Hz; (c) 60 Hz; 1: HA10-at d 3; 2: HA10- at d 7; 3: HA20- at d 3; 4: HA20- at d 7; 5: HA35- at d 3; 6: HA35- at d 7
图6 HA材料浸泡在SBF溶液中7 d后的EDS能谱分析
Fig. 6 EDS spectra of HA materials after 7 d in SBF solution (a) Static state; (b) 40 Hz; (c) 60 Hz; 1: HA10-at d 7; 2: HA20-at d 7; 3: HA35-at d 7
[1] | ROY D M, LINNEHAN S K . Hydroxyapatite formed from coral skeletal carbonate by hydrothermal exchange. Nature, 1974,247(438):220-222. |
[2] | LI YAN-BAO, TJANDRA WILLANA, TAM KAM C . Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates. Materials Research Bulletin, 2008,43(8/9):2318-2326. |
[3] | LEGEROS RACQUEL ZAPANTA . Calcium phosphate-based osteoinductive materials. Chemical Reviews, 2008,108(11):4742-4753. |
[4] | ZHAO HONG-XIA, LI LI-HUA, DING SHAN , et al. Effect of porous structure and pore size on mechanical strength of 3D-printed comby scaffolds. Materials Letters, 2018,223:21-24. |
[5] | ALEHOSSEINI MORTEZA, GOLAFSHAN NASIM, KHARAZIHA MAHSHID , et al. Hemocompatible and bioactive heparin-loaded PCL—TCP fibrous membranes for bone tissue engineering. Macromolecular Bioscience, 2018, 18(6): 1800020- 1-14. |
[6] | ALI ENDER OFLUOGLU, UZAY ERDOGAN, MEHMET AYDOGAN , et al. Anterior cervical fusion with interbody cage containing beta-tricalcium phosphate: clinical and radiological results. Acta Orthopaedica et Traumatologica Turcica, 2017,51:197-200. |
[7] | YANG YONG-ZHU, ZHANG LEI, YANG GUO-JING , et al. Preparation and characterization of multi-shell hollow biphase bioceramic microsphere composite. Journal of Inorganic Materials, 2014,29(6):650-656. |
[8] | GERVASO FRANCESCA, PADMANABHAN SANOSH KUNJALUKKAL, SCALERA FRANCESCA , et al. Mechanical stability of highly porous hydroxyapatite scaffolds during different stages of in vitro studies. Materials Letters, 2016,185:239-242. |
[9] | HABIBOVIC PAMELA, YUAN HUI-PIN, VAN DER VALK C M , et al. 3D microenvironment as essential element for osteoinduction by biomaterials. Biomaterials, 2005,26(17):3565-3575. |
[10] | 智伟 . 材料及力学因素对磷酸钙陶瓷骨诱导性的影响. 成都: 西南交通大学博士学位论文, 2017. |
[11] | TADSHI KOKUBO, HIROAKI TAKADAMA . How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 2006,27:2907-2915. |
[12] | DUAN YOU-RONG, WANG CHAO-YUAN, CHEN JI-YONG , et al. Bone-like apatite formation on calcium phosphate dense ceramics in dynamic SBF. Journal of Inorganic Materials, 2002,17(3):552-558. |
[13] | AGRAWAL C M, MCKINNEY J S, LANCTOT D , et al. Effect of fluid flow on the in vitro degradation kinetics of biodegradable scaffolds for tissue engineering. Biomaterials, 2000,21:2443-2452. |
[14] | KANG YUN-QING, YAO YA-DONG, YIN GUANG-FU , et al. A study on the in vitro degradation properties of poly(L-lactic acid)/β-tricalcuim phosphate (PLLA/β-TCP) scaffold under dynamic loading. Medical Engineering&Physic, 2009,31:589-594. |
[15] | ZHOU YI, GUAN XIAO-XU, ZHU ZHUO-LI , et al. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation. European Cells & Materials, 2011,22:12-25. |
[16] | ZHA DING-SHENG, CHEN JIAN-TING, DENG XUAN-GENG , et al. Effects of different frequency of vibration strain on proliferation and differentiation potency in osteoblast in vitro. Chinese Journal of Osteoporosis, 2008,14(5):303-307. |
[17] | CHEN JIAN-HUNG, LIU CHAO, YOU LI-DAN , et al. Boning up on Wolff’s law: mechanical regulation of the cells that make and maintain bone. Journal of Biomechanics, 2010,43:108-118. |
[18] | WEIHS ANNA M, FUCHS CHRISTIANE, TEUSCHL ANDREAS H , et al. Shock wave treatment enhances cell proliferation and improves wound healing by ATP release-coupled extracellular signal-regulation kinase(ERK) activation. Journal of Biological Chemistry, 2014,289(39):27090-27104. |
[19] | CHEN XU-YI, ZHANG XI-ZHNEG . A review on mechanobiology mechanism of bone formation and remodeling. Advances in Mechanics, 2007,37(4):601-610. |
[20] | JIA ZHI-BIN, ZHI WEI, LI JIN-YU , et al. Preparation and characterization of hydroxyapatite based porous composite scaffolds. Journal of Functional Materials, 2014,45(18):18129-18134. |
[21] | ZHI WEI, SHI FENG, LI JING-YU , et al. Surface microstructure on hydroxyapatite spherules and its regulation on stem cells. Journal of Inorganic Materials, 2017,32(3):319-325. |
[22] | LUO HUI-TAO, GUO TAI-LIN, ZHU DE-GUI , et al. Fabrication of translucent hydroxyapatite ceramics with different forms by Sol-Gel method. Journal of Inorganic Materials, 2013,28(8):804-810. |
[23] | ZHOU SI-GUI, YUAN XI, LIU QING-HUA , et al. BAPTA-AM, an intracellular calcium chelator, inhibits RANKL-induced bone marrow macrophages differentiation through MEK/ERK, p38 MAKP and Akt, but not JNK pathways. Cytokine, 2010,52:210-214. |
[24] | WANG JING, CHEN YING, ZHU XIANG-DONG , et al. Study on the elution of the adsorbed serum proteins on biphasic calcium phosphate ceramics. Journal of Inorganic Materials, 2013,28(10):1143-1147. |
[25] | LEE WING-HIN, LOO CHING-YEE, ROHANIZADEH RAMIN . A review of chemical surface modification of bioceramics: effects on protein adsorption and cellular response. Colloids and Surfaces B: Biointerfaces, 2014,122:823-834. |
[26] | REY C, COMBES C, DROUTE C , et al. Bone mineral: update on chemical composition and structure. Osteoporosis International, 2009,20(12):2155-2155. |
[27] | LU DAO-HUAN, LUO XUE-SHI, LI HONG , et al. Progress in biomineralization of collagen fibers in vitro. Materials Review, 2016,30(9):72-77. |
[28] | MARTIN R I, BROWN P W . The effect of magnesium on hydroxyapatite formation in vitro from CaHPO4 and Ca4(PO4)2O at 37.4 ℃. Calcified Tissue International, 1997,60(6):538-546. |
[29] | TURNBULL GARETH, CLARKE JON, PICARD FREDERIC , et al. 3D bioactive composite scaffolds for bone tissue engineering. Bioactive Materials, 2018,3(3):278-214. |
[30] | GUO LAI-YANG, ZHANG JING-WEI, ZHAO JING , et al. Preparation and characterization of porous scaffolds with favourable interpore connectivity. Journal of Inorganic Materials, 2011,26(1):17-21. |
[31] | YOU CHANGKOOK, LEE MOON-HWAN, LEE HYO-JIN , et al. The effect of macro/micro combination pore structure of biphasic calcium phosphate scaffold on bioactivity. Ceramics International, 2017,43(4):3540-3546. |
[32] | RUSTOM L E, BOUDOU T, LOU S , et al. Micropore-induced capillarity enhances bone distribution in vivo in biphasic calcium phosphate scaffolds. Acta Biomaterialia, 2016,44(1):144-54. |
[33] | SLOSARCZYK A, STOBIERSKA E, PASZKIEWICZ Z , et al. Calcium phosphate materials prepared from precipitates with various calcium: phosphorus molar ratios.[J] Am. Ceram. Soc., 1996,79(10):2539-2544. |
[34] | ANA M C BARRADAS, YUAN HUI-PIN, CLEMENS A , et al. Osteoinductive biomaterials: current knowledge of properties, experimental models and biological mechanisms. European Cells and Materials, 2011,21:407-429. |
[35] | KURASHINA K, KURITA H, WU Q , et al. Ectopic osteogenesis with biphasic ceramics of hydroxyapatite and tricalcium phosphate in rabbits. Biomaterials, 2002,23(2):407-412. |
[36] | DENG CHUN-LIN . Effect of flowing speed on bone-like apatite information in porous calcium phosphate in dynamic RSBF. Journal of Materials Science Letters, 2005,40:1809-1812. |
[37] | YAMASAKI HIROSHI, SAKAI HIDETAKA . Osteogenic response to porous hydroxyapatite ceramics under the skin of dogs. Biomaterials, 1992,15(5):308-312. |
[1] | 吴锐, 张敏慧, 金成韵, 林健, 王德平. 光热核壳TiN@硼硅酸盐生物玻璃纳米颗粒的降解和矿化性能[J]. 无机材料学报, 2023, 38(6): 708-716. |
[2] | 庞力斌, 王德平. 介孔硼硅酸盐玻璃微球药物载体的制备及其性能表征[J]. 无机材料学报, 2022, 37(7): 780-786. |
[3] | 魏子钦, 夏翔, 李勤, 李国荣, 常江. 钛酸钡/硅酸钙复合生物活性压电陶瓷的制备及性能研究[J]. 无机材料学报, 2022, 37(6): 617-622. |
[4] | 唐洁吟, 王刚, 刘聪, 邹学农, 陈晓峰. 微纳米生物活性玻璃诱导牙本质再矿化研究[J]. 无机材料学报, 2022, 37(4): 436-444. |
[5] | 施吉翔, 翟东, 朱敏, 朱钰方. 生物活性玻璃-二氧化锰复合支架的制备与表征[J]. 无机材料学报, 2022, 37(4): 427-435. |
[6] | 舒朝琴, 朱敏, 朱钰方. 熔盐法制备含钴氯磷灰石及其抗氧化性能和细胞相容性研究[J]. 无机材料学报, 2022, 37(11): 1225-1235. |
[7] | 陈铖, 丁晶鑫, 王会, 王德平. 掺钕介孔硼硅酸盐生物活性玻璃陶瓷骨水泥的制备与性能表征[J]. 无机材料学报, 2022, 37(11): 1245-1258. |
[8] | 陈亚玲, 舒松, 王劭鑫, 李建军. Mn-HAP基低温SCR催化剂的制备及抗硫中毒性能[J]. 无机材料学报, 2022, 37(10): 1065-1072. |
[9] | 朱雨桐, 谭佩洁, 林海, 朱向东, 张兴栋. 可注射透明质酸/羟基磷灰石复合材料: 制备、理化性能和细胞相容性[J]. 无机材料学报, 2021, 36(9): 981-990. |
[10] | 朱子旻, 张敏慧, 张轩宇, 姚爱华, 林健, 王德平. 硼硅酸盐生物活性玻璃在直流电场下的体外矿化性能[J]. 无机材料学报, 2021, 36(9): 1006-1012. |
[11] | 林子扬, 常宇辰, 吴章凡, 包荣, 林文庆, 王德平. 不同模拟体液对硼硅酸盐生物活性玻璃基骨水泥矿化性能的影响[J]. 无机材料学报, 2021, 36(7): 745-752. |
[12] | 吴永豪, 李向锋, 朱向东, 张兴栋. 高强度羟基磷灰石纳米陶瓷的构建及其促成骨细胞活性研究[J]. 无机材料学报, 2021, 36(5): 552-560. |
[13] | 宋可可, 黄浩, 鲁梦婕, 杨安春, 翁杰, 段可. 水热制备锌、硅、镁、铁等元素掺杂羟基磷灰石及其表征[J]. 无机材料学报, 2021, 36(10): 1091-1096. |
[14] | 邵悦婷, 朱英杰, 董丽颖, 蔡安勇. 羟基磷灰石超长纳米线/植物纤维纳米复合“宣纸”及其防霉性能[J]. 无机材料学报, 2021, 36(1): 107-112. |
[15] | 孙团伟,朱英杰. 一步溶剂热法合成锶掺杂羟基磷灰石超长纳米线[J]. 无机材料学报, 2020, 35(6): 724-728. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||